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Abstract

The possibility of using a nonlinear empirical atmospheric model for hybrid coupled
atmosphere-ocean modelling has been examined with a neural network (NN) model for
predicting the contemporaneous wind stress field from the upper ocean state. Upper ocean
heat content (HC) from a 6-layer ocean model was a better predictor of the wind stress
than the (observed or modelled) sea surface temperature (SST). Our results showed that
the NN model generally had slightly better skills in predicting the contemporaneous wind
stress than the linear regression (LR) model in the off-equatorial tropical Pacific and in
the eastern equatorial Pacific. When the wind stresses from the NN and LR models were
used to drive the ocean model, slightly better SST skills were found in the off-equatorial
tropical Pacific and in the eastern equatorial Pacific when the NN winds were used in-
stead of the LR winds. Better skills for the model HC were found in the western and
central equatorial Pacific when the NN winds were used instead of the LR winds. Why
NN failed to show more significant improvement over LR in the equatorial Pacific for the
wind stress and SST is probably because the relationship between the surface ocean and

the atmosphere in the equatorial Pacific over the seasonal time scale is basically linear.

1 Introduction

Within the last decade, many models have been developed for forecasting the El Nino-
Southern Oscillation (ENSO) phenomena, a coupled atmosphere-ocean interaction centred
in the tropical Pacific (Barnston et al., 1994 and Latif et al., 1994). These models are
generally classified into three groups: dynamical coupled models, statistical models and
hybrid coupled models.

A hybrid-coupled model (HCM) connects a statistical atmospheric model to a dynam-
ical ocean model (Latif and Villwock 1990; Neelin 1990; Barnett et al. 1993; Balmaseda

et al. 1994). This design uses the fact that the ocean has the long-term memory in the



coupled atmosphere-ocean system. The fast adjustment of the atmosphere to the ocean
variables such as the sea surface temperature (SST) and upper ocean heat content (HC)
motivates the use of a steady-state statistical model for the atmosphere. All HCMs are
based on the assumption that for monthly or longer time scales, contemporaneous cor-
relation between wind stress and oceanic variables is associated with the atmosphere’s
rapid non-local adjustment to the oceanic anomaly patterns throughout the basin (Syu et
al.1995). The main advantages of an HCM are: (1) easier understanding of the coupling
mechanisms and lower computing cost than a fully coupled GCM (Blanke et al 1997);
(2) performing comparable to or even better than a coupled GCM in simulation and
prediction (Palmer et al 1994).

An important aspect affecting the HCM performance is the construction of the em-
pirical atmospheric model, e.g. what method was used for estimating the surface wind
stress field from a given ocean state, and which oceanic variables were used as predic-
tors for the wind stress. The methods used have advanced from correlation (Latif and
Villwock 1990, Latif and Fligel 1991), linear regression with EOF modes (Barnett et al.
1993) to SVD (Singular Value Decomposition) (Syu et al.1995). However, all empirical
atmospheric models used in HCMs have so far been linear statistical models. Hence in
this paper, we investigate the possibility of improving the empirical atmospheric model
by a nonlinear approach using neural networks. Hsieh and Tang (1998) gave a review
on the recent applications of neural network models to prediction and data analysis in
meteorology and oceanography.

This paper is structured as follows: Section 2 briefly describes the dynamical ocean
model. Section 3 describes the empirical atmospheric models, including linear and non-
linear models. Section 4 compares the wind stress estimated using the linear and nonlinear
models. Section 5 compares the the ocean model forced with the wind stress from the

two empirical atmospheric models.



2 Ocean Model

The ocean model used in this research is one of intermediate complexity, originated from
Anderson and McCreary (1985) and Balmaseda et al. (1994, 1995), but extended to six
active layers in this study. It consists of depth averaged primitive equations in six active
layers, overlying a deep inert layer. The model allows for an exchange of mass, momentum
and heat at each layer interface by a parameterisation of entrainment. It has been shown
to be a useful tool for studying the ENSO problem and can compare favourably with
much more elaborate GCMs (Palmer and Anderson 1994)

The model equations and parameterisations are shown in the Appendix. The model
uses an Arakawa C grid layout, with a resolution of 1.5° x 1.5°, covering an extension
from 30°N - 30°S in latitude and from 123°E - 69°W in longitude. The time step for
integration is two hours. The boundaries are closed, with free slip conditions.

The model was first spun up for 100 years with monthly climatological wind stress
and heat flux @), as forcing fields. The climatological wind stress used consisted of the
seasonal mean of the FSU (Florida State University) observed wind stress (Goldenberg
and O’Brien 1981), while the heat flux was represented by the Oberhuber (1988) heat

flux Qo plus a relaxation term to Ty, the observed SST, i.e.
Qs = QO—I')‘(T_TO): (1)

where T is the model SST, @y and T; are the monthly climatological heat flux and SST,
respectively, and A (which is negative) controls the rate of relaxation to the observed
SST.

After the 100-year spinup by the seasonal forcing, the model seasonal climatology was
obtained. We then made a 30-year model control run, with forcing by the FSU wind stress
from 1961-1990. The very good performance of the model is seen from the statistics given
in the Appendix. Model outputs such as SST and HC can further be used as predictors

for the atmospheric model. For this integration the surface heat formulation was modified



to
Qs = Qo+ MTin — To) + 0.2X(T — T), (2)

where T, represents the model SST climatology. The factor 0.2 allows a weaker relaxation
to the model seasonal cycle, so that the model SST anomalies have similar magnitudes
to those observed (Stockdale, 1992).

For easier comparison in the following sections, the ocean domain was divided into

several standard regions, Nifol-4 and Eql-3 (Fig.1).

3 Atmospheric models

a EOFs for predictors and predictands

Two empirical atmospheric models were constructed: One was the traditional linear re-
gression (LR) model widely used in HCMs (Barnett et al 1993); the other was a non-linear
regression model, by neural networks.

As potential predictors for both atmospheric models, several oceanic variables were
chosen, namely the observed SST, the model SST and HC from the ocean model forced
with the observed wind stress. The time period taken for the model construction was from
1964-1990, since in the first 3 years, the output of ocean model was greatly affected by the
ocean initial conditions and had a poor agreement with observations. The observed SST's
were from the Comprehensive Ocean Atmosphere Data Set.(COADS, Slutz et al 1985).
The FSU wind stress was also detrended by Singular Spectral Analysis (Allen,1992) and
smoothed with a 3-month running mean filter.

As in other studies (Barnett et al 1993, Balmaseda 1994), an EOF (Empirical Or-
thogonal Function) analysis was first applied to each dataset to extract the predictors

and predictands. The oceanic predictor field 7'(x,?), and the predictand field 7(x,t), the



zonal or meridional component of the wind stress, were expressed by EOF analysis as

T(x,t) = >_ an(t)en(x) T(x,t) = ) Bu(t) fa(x), (3)

where n is the mode number and the seasonal cycle had been removed for both fields prior
to the EOF analysis. For the model SST and HC, the first 3 EOF modes accounted for
over 70% of total variance, whereas for the observed SST about 67% of total variance was
explained by the first 3 EOF modes. In contrast, the first 3 wind stress EOFs explained
only 35% of the total variance, due to the presence of high frequency oscillations and
noise in the wind stress field. The first three wind EOF modes still captured the main
low frequent signals, e.g. ENSO and the first wind EOF modes are highly correlated with
the observed SST anomaly averaged over the NINO 3 area (not shown).

All variables have a common feature from their EOF analysis, 1.e. the variance contri-
bution by individual modes became rather small after the first 3 modes. Hence, following
the suggestions of Latif et al (1990) and Goswami and Shukla (1991), we used the first
3 EOF modes of oceanic variables 7' as predictors, and the first 3 EOF modes of wind
stress as predictands, in constructing both the linear and the non-linear models. The

linear regression model is similar to that of Barnett et al (1993).

b Neural Network Model

The nonlinear neural network (NN) model used in this study was the feed-forward NN
(Hsieh and Tang, 1998, Tangang et al. 1998a,b). The 3 input neurons were the first 3
EOF time series a,(t) (either for SST or for HC), and the single output neuron was one
of the (zonal or meridional) wind stress EOF time series (3,(t), i.e. a separate network
was used to predict each of the wind stress EOF modes. There was one hidden layer
containing 3 neurons lying between the input layer and the output layer. In the case
where both SST and HC are used as predictors, the network had 6 input neurons. Note

that there was no time lag between the predictors and the predictand.



To alleviate the problems with NN modelling, i.e. overfitting and instability (Hsieh
and Tang, 1998), we used an ensemble of 25 NNs with random initial parameters. The
final output of the NN model was the ensemble average of the 25 individual model outputs.

A cross-validation procedure was used to measure the prediction skills. The record
of 1964-1990 was divided into 3 segments, the first 7 years and the latter two 10-years
periods. Two of the data segments were used to train the models, and the third used for
testing the model predictions. The segments were rotated, so that testing could be done
for the entire record. This design ensured that no training data were used for testing the

prediction skills.

4 Results from atmospheric models

a The predictors

So far, almost all HCMs used either simulated SST from ocean models or observed SST
to estimate the wind stress (Barnett et al 1993; Syu et al.1995). Whether SST is the
best predictor for the wind stress is debatable. Observations showed that the SSTs do
not reflect the changing subsurface temperatures in the tropical western Pacific, where
subsurface temperature anomalies and thermocline displacements have an important role
in the ocean-atmosphere coupling processes, (White and Pazan 1987, Latif and Graham
1992). Therefore, upper ocean heat contents (HC) as predictors might have higher skills
than SST.

Upper HC is defined here as the sum of the temperatures over the first two layers,

calculated from

hi(T; — Tx) 2
ey e — HC = HC,:, 4
Yoy Hinit(2) ; )

where T7 is the temperature of the bottom layer, and H;,;:(z) is the initial thickness of

HC;

layer 1.



The first EOF modes for the HC, the zonal and meridional wind stress (Fig.2), are
the modes associated with the ENSO oscillation— where the HC shifts east-west along
the equator (Fig.2a), the zonal wind anomaly develops in the western equatorial Pacific
(Fig.2b), and the trade winds show anomalous convergence along the equator (Fig.2c).
Because of their ENSO nature, the anomalies in these EOF modes are all mainly confined
to within 15°N - 15°S (Fig.2). To explain the anomalies outside this narrow equatorial
belt, the second, third, and even higher modes are needed.

Table 1 shows the cross-validated skills attained by the NN and LR models with the
observed SST, model HC, model SST, and model SST+HC serving as predictors for the
wind stress EOF time series 8, (n = 1,2,3). Here SST + HC does not mean a combined
EQOF, but that their separate EOF time series normalized by the standard deviations are
the predictors. HC as predictors generally had the highest skills as expected, whereas both
observed SST and model SST generally attained the lowest skills. SST+HC predictors
attained lower skills than HC alone. This suggests that the first 3 EOFs of HC have
well represented the ocean status, and more SST EOF modes input only bring additional
noise and lead to overfitting. For the first zonal stress mode, the model SST actually did
better than the observed SST, probably because the ocean model acted as a complicated
space-time filter, thereby removing some noise in the SST (Latif and Graham 1992). For
the other wind stress modes, the model SST did not do as well as the observed SST. In
general, NN did not predict the first zonal or meridional wind stress mode much better
than LR; only for the second and third modes did NN seem to have an edge over LR
(Table 1).

b  Prediction skills of the NN and LR models

Since we only tried to predict the first 3 wind stress modes, the prediction skills were
often compared in later sections against the wind stress reconstructed from the first 3

EOF modes of the FSU wind stress, which we will refer to as the idealized wind stress.



Such a comparison more objectively evaluates the skill of the atmospheric model, as it
excludes the noisy higher modes which are not modelled. Fig 3 is the correlation map
between the idealized wind stress and the FSU wind stress, showing that the idealized
field is a reasonable representation, especially in the western and central Pacific.

As the model HC has the best prediction skills for the wind stress, henceforth we
will only use the HC as predictor. The reconstructed stress field was obtained using the
predicted EOF time series, either from NN or LR, for the first 3 EOF modes. The cross-
validated correlation and Root Mean Square (RMS) error of the reconstructed stress field
from NN model verified with the idealized field were shown in Fig.4 and Fig.5. As seen
in Fig.4, for zonal stress, the best skills occurred at the equatorial western and eastern
Pacific, whereas the worst occurred at the coast off South America, the Australian summer
monsoon region and the subtropical North Pacific. The high skill areas are associated with
the anomalous SST areas during ENSO events where the response of zonal stress to the
ocean status is strong due to active coupling. The lower correlation along the coast of
South America might be attributed to the fact that wind-stress is almost 'white’ in this
region (Goldenberg and O’Brien, 1981, Latif and Fligel 1991). For meridional stress, the
highest skills were found in the Intertropical Convergence Zone (ITCZ) and the South
Pacific Convergence Zone (SPCZ) areas.

The RMS error map (Fig.5) indicated that the estimation of the amplitude by the NN
model was good, especially in eastern Pacific ocean. Large RMS errors only occurred at
the ITCZ and SPCZ areas, in contrast to the correlation map (Fig.4), where these two
areas have good skills (especially for the meridional stress). The active coupling in these
areas induced large anomalous variations in the stress, which generated large amplitude
errors even though the phase errors were small, producing good correlations but large
RMS errors.

Differences between the prediction skills of the NN model and the LR model for the
period of 1964-1990 are shown in Figs. 6 and 7. The correlation skill differences (Fig.6)



between NN and LR were very small, though NN skills were indeed slightly ahead of LR
skills in most areas. For the zonal stress (Fig.6a), the NN model outperformed LR in
almost the whole subtropical domain of 15°N - 30°N and near the Nino3 region. That the
improvements occurred in these regions can be understood from our earlier finding (Table
1) that the NN and the LR had the same skill in predicting the mode 1 zonal stress
(Fig.2b), and the NN had an edge over LR for modes 2 and 3. Hence only in regions
outside the main anomaly area of mode 1 (i.e. the western equatorial Pacific in Fig.2b)
would the NN appear to have slightly better skill than LR, as found in Fig.6a. For the
meridional stress (Fig.6b), NN did slightly better in the eastern Pacific away from the
equator.

The RMS error difference between the two models (Fig.7) indicated that the NN model
slightly outperformed the LR model for almost the whole domain except mainly for the
western equatorial region of 150°E - 160°W centred at 5°S. The slight advantage of NN
over LR is manifested more clearly in the RMS error map (Fig.7) than in the correlation
map (Fig.6), suggesting that model nonlinearity may be slightly more useful in estimating
the amplitude than in estimating the phase of the wind stress anomalies.

The very small skill differences between NN and LR follows from the fact that the
equatorial dynamical system is almost linear, so a nonlinear model does not give much
better results than a linear model. Tang et al. (1999) found that with sea level pressure
(SLP) as predictors for the SST anomalies, NN slightly outperformed LR in the Nifio3
region, but vice versa in the Nino4 region, suggesting that nonlinearity is quite weak in
the eastern-central equatorial Pacific, but even weaker in the western-central equatorial
Pacific. Here, Fig.7 and to a lesser extent Fig.6 are consistent with the Tang el al. (1999)

finding.



5 The ocean model driven by the empirical wind

a SST skills

To assess the effect of the empirical wind stress from the NN and the LR models on the
ocean model, we ran the ocean model twice, with forcing by the two model predicted
wind stresses during the period 1964-1990. The outputs of the ocean model forced by the
idealized wind stress (i.e. the first 3 EOFs of the FSU data) were later used to verify the
skills from the empirical wind stress. Fig.8 compares the SST from the ocean model driven
by the idealized wind stress with that driven by the full FSU stress, showing a generally
close relation, especially in the western and central equatorial Pacific. This justifies the
use of the ocean model driven by the idealized stress as the standard for comparing the
empirical winds.

Fig.9 shows the skill of the SST from the ocean model forced with the empirical wind
stress from the NN model. As seen in the correlation map (Fig.9a), the skill is good, with
a correlation of over 0.8 covering much of the whole model domain. The highest skill, up
to over 0.9, occurred at the central equatorial Pacific region.

A comparison of the ocean models driven by the empirical wind stress from the NN
model and that from the LR model was then made. Fig.10a depicts the difference in the
model SST correlation skills between the NN model and the LR model when they were
each verified against the standard SST, 1.e. the SST from the model driven by the idealized
wind stress. For the equatorial western and central Pacific, the difference was negligible.
As mentioned earlier, this is probably due to the mainly linear dynamics in the equatorial
western and central Pacific. The largest differences occurred in the off-equatorial areas
and in the eastern equatorial Pacific, where the NN winds tended to outperform the LR
winds. The maximum correlation difference reached 0.34 in the northwest region around
150°E and 15°N. The positive correlation skill areas in the off-equatorial regions of Fig.10a

roughly coincided with the positive zonal wind stress skills attained by the NN over LR in
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Fig.6a. There was no such agreement between Fig.10a and Fig.6a in the eastern equatorial
Pacific, where the skill differences between NN and LR were small for the zonal stress, but
relatively large for the SST. This could be due to the fact that in the equatorial western
Pacific, the oceanic response is mainly locally forced by the wind stress, whereas in the
eastern Pacific, equatorial Kelvin wave propagation, upwelling and vertical mixing are
thought to predominantly control the SST variability (Battisti 1988).

The difference in the SST RMS error between the ocean models driven by the NN and
LR wind stress (Fig.10b) generally agreed with Fig.10a, i.e. higher correlation skill areas
corresponded with lower RMS error regions, and vice versa.

While the above comparisons were based on the model ocean forced with the idealized
wind stress as standard, the comparisons based on the model forced with the FSU stress
yielded the same conclusions (not shown). We averaged the model SST forced by the FSU
stress, the NN and the LR stress over the Nino 142 region, and the whole off-equatorial
Pacific in the south (25°S - 15°S, 130°E - 80°W) and in the north (15°N - 25°N, 130°E -
80°W) to get the individual SST indices over these areas. With the ocean model driven
by the FSU stress as the comparison standard, the correlation skills for the NN model
were 0.38, 0.57 and 0.50 respectively in these 3 areas, compared with correlations of 0.31,
0.51 and 0.41 for the LR model in the same areas.

In summary, using a nonlinear empirical atmospheric model to drive the ocean might
bring modest benefits for SST simulation in the off-equatorial tropical regions and in the
eastern equatorial Pacific. Improvements in the equatorial western and central Pacific
would be unlikely as the dynamics in these regions appeared very nearly linear from other

studies (e.g. Tang et al. 1999).

b Heat content Skills

The HC redistribution in the western tropical Pacific can lead the evolution of SST anoma-

lies in the eastern Pacific and has been known to be an important factor in the evolution
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of many ENSO episodes. In particular, the HC anomalies over the equatorial band 5°N to
5°§ can be a very good precursor for the SST anomalies in the Nifio3 region (Zebiak 1989,
Latif et at 1992, Balmaseda et al 1994). We therefore examined the HC in the ocean
model forced with the wind stress from the NN model and from the LR model. The
HC from the ocean model forced with the idealized stress was taken as the verification
standard.

The HC skill from the ocean forced with the NN model wind stress was generally better
than with the LR stress for the western Pacific basin, in particular in the western and
central Pacific over the equatorial band of 10°N to 10°S (Fig.11). From the ocean model
driven by the idealized stress, the HC anomalies averaged over the whole equatorial Pacific
(124°E-70°W,5°N-5°S) led the observed Nino3 SST anomalies by 3-4 months (Fig.12).
Their correlations were 0.73 and 0.72 with the HC leading by 3 and 4 months respectively.
The 3-month lag correlations of the observed Nino3 SST anomalies and the HC index
averaged over whole equatorial Pacific for the ocean model forced by the NN wind and
by the LR wind did indicate that the NN wind had slightly better skill (0.62 for NN and
0.58 for LR).

6 Conclusions

We have examined the possibility of using a nonlinear empirical atmospheric model for
hybrid coupled modelling, by developing a neural network (NN) model for predicting the
contemporaneous wind stress field from the ocean state, and comparing the NN model
with a linear regression (LR) model. Upper heat content (HC) from an ocean model was
found to be a better predictor of the wind stress than the (observed or modelled) SST.
Our results showed that the NN model generally had slightly better skill in predicting
the contemporaneous wind stress than the simple LR model in the off-equatorial tropical
Pacific and in the eastern equatorial Pacific, mainly through better predictions of the

second and third wind stress modes.

12



When the NN and LR model produced wind stresses were used to drive the ocean
model, slightly better SST skill was found in the off-equatorial tropical Pacific and in the
eastern equatorial Pacific when the NN winds were used instead of the LR winds. Better
skill for the model HC were found in the western and central equatorial Pacific when the
NN winds were used instead of the LR winds. Since the HC involves the product of the
upper ocean temperature with the thickness of the upper ocean, it is a more nonlinear
variable than the SST- this may partly explain why the nonlinear NN model, when
compared with the LR model, generally predicted the HC better than the SST. Because
changes in the HC in the western equatorial region can lead to SST anomalies in the
eastern Pacific, the potential skill improvement for HC by NN could be of interest.

As discussed in Tang et al.(1999), there are several possible reasons why NN failed to
show more significant improvements over LR in the equatorial Pacific for wind stress and
SST. The first (and the most probable) is that the relation between the surface ocean
and the atmosphere in the equatorial Pacific over the seasonal time scale is basically
linear, with nonlinear processes playing only minor roles. The linear assumption was also
supported by Xue et al (1994).

The second reason is that the data records are not long enough. NN is more capable
than LR but the data requirement is also considerably higher. To extract more than the
linear rules from the data, longer records of good quality data are needed. As Barnett
et al.(1993) built LR models for individual calendar months, we also tested empirical
atmospheric models for individual seasons. Although the seasonal approach can include
the effect of the different basic states in different seasons of the year, we did not find the
overall cross-validated anomaly skill better than the model using all the data— the tradeoff
being that by dividing the data record into seasons, we have even less data to construct
each seasonal model.

Finally, the NN model is still a rudimentary one and further improvements in the NN

model design is possible. So far, the NN has been used as a nonlinear regression model.
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Work is underway to develop a NN nonlinear canonical correlation analysis model, which

should provide a more optimal connection between the predictor and predictand fields.

7 Appendix: Ocean Dynamical Model

Like the two-layer model of Balmaseda et al (1994), this 6-layer model includes explicit
nonlinear thermodynamics for all layers, accounting for horizontal advection, vertical heat
transport, diffusion and, in the first layer, surface heat flux. Besides the physical processes
considered in the two-layer model, the 6-layer model includes a viscosity between these
layers to account for wind driven Ekman effects, simple convective mixing between 2
adjacent layers due to upwelling and horizontal advection.

The model equations are as follows:

0 0 0 h; T

= +tuiz— +vim— + fkA | hjuy = ——Vp; + M + — 2(hsuz) + V3,
<8t+u8m+v8y+f /\) u pOVp—I— —|—p0—|-1/V( u;) + (5)
8 8 0 )

(a tuig ‘|"Uz'@> hi = D; + dV~°h;, (6)

o o8 8\, )
(a"’uza_m—l_vz@) TZ_QS—I_Hl—I_K’V T“ (7)

where layer subscript # = 1,..., N. The symbols u and v are the zonal and meridional
components of velocity respectively, p is the pressure, h is the layer thickness, 7 is the
wind stress, T' is temperature, f is the Coriolis parameter given by f = Sy, po is a
constant density, and v, d and k are the coefficients of momentum, thickness and heat
diffusivity. The terms D;, M;, H; are the mass, momentum and heat exchanges between
layers and are discussed below. The term (), is the surface heat flux determined as for
the 2-layer model and V; is a vertical viscosity used if the Ekman layer is resolved. Vj is

parameterized as

V; = Ai(ui_l — ui) + Ai+1(ui+1 — ui), where Ai+1 < A;
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The pressure gradients are

1 i—1 N hi i—1
p—Vpi = gOLV (Z }LJ(Tz — TN+1) —|— ZhJ(TJ - TN+1)) —ga (? —|— Zhﬂ) VTz (8)
0 i=1 j=t i=1

where g and a are the gravitational constant and the thermal expansion coefficient re-

spectively. The pressure at the sea surface is

N N
Ps = —gpN+1 (Ho -3 hj) — 9> pik;, (9)
7j=1 7j=1

and Hy is the total depth of the model (a constant), and p; is the density of the jth layer.
D; is based on the upwelling, €.;, and downwelling, €4;, velocities between layers z and

1 + 1 which are parameterised as follows:
€ei — (I‘IZ — hi)z/teiHi, if hZ S I‘Iz else €es — 0, (10)
€d; — —(Hi — hi)z/tdiHi, lf hi Z HZ' else €d; — 0,

where H; is the nominal layer depth towards which entrainment or detrainment tend to
force layer 2, and t.; and tg4 are the entrainment and detrainment time scales respectively.

The total vertical velocity may therefore be expressed as

1 1
52 = i(eei + |eei|) + 5(6& - |Edz'|)-

The thickness of the 7th layer can be changed by mass exchanges at both its top and
bottom surfaces, with layer 7 — 1 above and 7 + 1 below. The total mass exchanged in (6)

is given by
o /
Dz — 61: - 61:—1'

Note that within each layer the parameters only control entrainment or detrainment with
the layer below. Any entrainment or detrainment with the layer above is determined by
the thickness of the layer above.

The momentum exchanges for layer : are
M; = €uj11 — € u; for € >0,e;_, >0, (11)
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M; = €iuj1 — € U5 for € >0,e. , <0,

! ) ) )
M; = gu; —€;,_,u5_1 for € <0,¢_, <0,

2

Y . ’ ’
M; = gu; —€;,_,u; for € <0,¢_,>0.

The heat transport term related to upwelling and downwelling is
Hz' = —E,IL-)\i(Ti — Ti+1)/hi — 62_1/\i—1(ﬂ—1 — Tz)/hz fOI' 62 Z 0, 62_1 S 0, (12)
H;=0 for € <0,e_,>0,

where JA; is a parameter controlling the effective vertical temperature gradient. To make
total heat content conservative, A; is taken to be 1. Table 2 lists the parameters used in
the model.

In order to quantify the performance of the model over the whole model domain,
a point by point comparison between model and observations has been carried out by
calculating the correlation and the RMS error, as in Miller et al (1993) and Balmaseda
et al (1994, 1995). Good correlation skills appear in the equatorial Pacific band of 15°S
and 15°N, where the maximum correlation (0.6-0.8) is achieved over a relatively broad
area in the central Pacific, decreasing smoothly westward and eastward (Fig.13a). In the
RMS error map (Fig.13b), the largest error is located in the eastern Pacific, along the
coast of South America. In the remainder of the basin, the RMS error is much smaller,
with typical values of 0.4-0.6. Compared with GCMs (Miller et at 1993), the ocean model
presented here shares with the GCMs the high RMS error near the South American coast.
In the western Pacific the RMS errors are smaller than those in the other models.

Table 3 shows the comparison with other models. In order to allow more direct com-
parison with the other models, we smoothed our time series by a 5-month running mean
filter. The model has generally relatively good correlation skills in the whole equatorial

Pacific except in the area of Nifol+2.
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Table 1: Correlation between the predicted wind stress EOF time series and the observed wind stress
EOQOF time series for the first 3 modes, using the observed SST, the model HC, the model SST, and
the model HC+4SST as predictors. Results are shown for both the NN model and the LR model, and

for the zonal (z) and meridional (y) components of the wind stress.

Predictors Obs.SST HC Mod.SST HC4SST

Predictands | NN LR | NN LR | NN LR | NN LR

Tz @ B1 0.74 0.72|0.89 0.89 |0.81 0.81|0.88 0.88
Tz & Ba 0.57 0.52|0.76 0.73 |0.54 0.52 | 0.75 0.70
Tz ' B3 0.38 0.24 {040 0.35|0.11 0.06 | 0.29 0.26
Tyt B1 0.86 0.83 086 0.86|0.83 0.81|0.84 0.86
Ty : B2 0.53 0.43 |0.66 0.66 | 0.47 0.46 | 0.57 0.62
Ty : B3 047 045|024 0.21]0.21 0.19 |0.28 0.24

Table 2: Values of the parameters used in the 6-layer ocean model

Layer H(m) te(days) ts(days) Hinie(m) Tima(°C) A

1 100 1 500 100 26 0.75
2 175 150 500*150 175 16 1
3 250 150 500*150 250 13 1
4 320 150 500*150 320 10 1
5 400 150 500*150 400 8 1
6 500 150 500*150 500 6 1
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Figure 1: Location of the various oceanic regions used in the analysis.
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Table 3: Correlation between the observed SST and that from 10 models. The results of the first

9 models are taken from Palmer and Anderson (1994). The final model is the one used in this study.

Model A, described in Wu et al (1994), is a 1% layer model with specified mean climatology.

Model B, is a 2%—1a.yer model, described in Balmaseda et al (1994). Model C, described in Davey

et al(1994), is also a 2%—1a.yer model. While model D and E are versions of the GFDL Modular

Ocean Model, with resolution of 1%0 X 1%0 and %o latitude Xl%o longitude respectively.

Model Region
EQ3 Nino4 EQ2 Nimo3d EQ1 Ninol+2
Cane-Zebiak - 0.46 - 0.60 - 0.68
Max-Planck Institute - 0.76 - 0.74 - 0.59
OPYC - 0.72 - 0.63 - 0.46
GFDL - 0.81 - 0.69 - 0.57
A 043 0.64 0.77 0.73  0.69 0.54
B 0.27  0.59 0.77 0.75  0.69 0.40
C 0.34 0.55 0.67 0.62 0.51 0.26
D 0.60 0.76 0.79 0.55 0.55 0.54
E 0.59 0.76 0.79 0.65 0.60 0.58
Model used here 0.55 0.73 0.82 0.80 0.75 0.38
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Figure 2: The first EOF mode for (a) the upper ocean heat content (HC) from the ocean
model driven by the FSU wind stress, (b) the FSU zonal wind stress and (c) the meridional

wind stress. Negative contours are shown as dashed curves and zero contours as dotted

curves. (C.i. = 0.01°C).
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Figure 3: Correlations of the FSU wind stress and the idealized wind stress (reconstructed
from the first 3 EOF modes of the FSU wind stress) for (a) the zonal stress (contour

interval = c.i. = 0.1), and (b) the meridional stress (c.i. = 0.2).
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Figure 4: Cross-validated anomaly correlation between the predicted wind stress by NN
(with model HC as predictors) and the idealized wind stress (i.e. the FSU wind stress

with only the first 3 EOF modes): (a) zonal stress, and (b) meridional stress. C.i.=0.1
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Figure 5: RMS error of the predicted wind stress by NN verified against the idealized

wind stress: (a) zonal stress, and (b) meridional stress. C.i.=0.2 N m~2.
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Figure 6: The correlation between the wind stress predicted by the NN model and the
idealized stress minus the correlation between the wind stress predicted by the LR model
and the idealized wind stress, for: (a) zonal stress, and (b) meridional stress. C.i. =
0.02. The zero contours are the dotted curves, while the negative contours are the dashed

curves. Positive values means the NN predicted wind stress is outperforming the LR one.
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Figure 7: The RMS error of the LR wind stress minus the RMS error of the NN wind
stress, (both verified against the idealized wind stress), for: (a) zonal stress, and (b)
meridional stress. C.i.=0.02 N m~2. Positive values means the NN predicted wind stress

1s outperforming the LR one.
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Figure 8: A cross-validated comparison of the model SST between the ocean model driven
by the FSU wind stress and that driven by the idealized stress (i.e. with only the first 3
EOFs), by (a) correlation (c.i.=0.1), and (b) RMS error (c.i.=0.2°C).
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Figure 9: A cross-validated comparison of the ocean model SST between that driven by

the idealized wind stress and that driven by the empirical wind stress from the NN model

(with HC as predictors), by (a) correlation (c.i.=0.05), and (b) RMS error (c.i.=0.1°C).
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Figure 10: The skill differences in the model SST between the model driven by the NN
model wind stress and that driven by the LR model stress, with both model SSTs verified
against the standard SST, i.e. the modby the idealized wind stress: (a) correlation skill
difference (c.i. = 0.02), and (b) RMS error difference (c.i.=0.02°C). Positive regions in
(a) indicate NN ahead of LR, while negative region in (b) indicate NN ahead of LR.
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Figure 11: Cross-validated skill differences in the model HC between the ocean model
driven by NN model wind stress and that driven by the LR model stress, both verified
against the model HC driven by the idealized wind stress: (a) correlation difference (c.i.
= 0.02), (b) RMS error difference (c.i.=0.05°C). Positive regions in (a) indicate NN ahead
of LR, while negative regions in (b) indicate NN ahead of LR.
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Figure 12: Time evolution of observed SST anomalies in NINO3 and model upper HC
forced FSU observed wind stress in whole equatorial equatorial Pacific (124°E-70°W,5°N-

5°S). Both were normalised and smoothed by 3 point running mean. Solid line is for SST

and dash line for HC.
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Figure 13: Statistics for the model SST anomalies relative to the COADS SST data: (a)
correlation (c.i.=0.1) and (b) RMS error (c.i.=0.1°C).
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