
Improvements to the Non-linear Principal Component 
Analysis Method, with Applications to ENSO and QBO

Stephen C. Newbigging1, Lawrence A. Mysak1 and William W. Hsieh2*

1Department of Atmospheric and Oceanic Sciences, McGill University, Montreal QC
2Department of Earth and Ocean Sciences, University of British Columbia, Vancouver BC V6T 1Z4

[Original manuscript received 24 July 2002; in revised form 15 May 2003]

ABSTRACT Two improvements to the Non-linear Principal Component Analysis (NLPCA) method are presented.
In the normal application of this method, a non-linear curve C is found that best fits the data. The method pro-
vides a projection function mapping from the data space to the curve C. However, this projection function is faulty
in that points in the data space are generally not projected onto their closest neighbours on C. Here, a new pro-
jection function is introduced which ensures that the data points are projected onto their closest neighbours on
C, resulting in an increase in the amount of variance explained by the NLPCA mode. This is illustrated by an
analysis of the sea surface temperature anomaly data from the tropical Pacific, where the El Niño-Southern
Oscillation (ENSO) phenomenon is manifested. A second shortcoming of the NLPCA method is that the curve C
comes with a parametrization which is arbitrary and has no physical interpretation. Here, the curve is re-param-
etrized by arc length. This allows the computation of more meaningful time series, which we illustrate through an
analysis of the Quasi-Biennial Oscillation (QBO) in the equatorial stratospheric zonal wind data.

RÉSUMÉ [traduit par la rédaction] On présente deux améliorations à la méthode d’analyse non linéaire des 
composantes principales (NLPCA). Normalement, avec cette méthode, on trouve une courbe non linéaire C qui
satisfait au mieux les données. La méthode fournit une fonction de projection établissant une correspondance
entre l’espace de données et la courbe C. Cependant, cette fonction de projection est imparfaite car les points
dans l’espace de données ne sont généralement pas projetés sur leurs plus proches voisins sur la courbe C. Ici,
on introduit une nouvelle fonction de projection qui assure que les points de données sont projetés vers leurs
plus proches voisins sur C, ce qui aboutit à un accroissement dans la quantité de variance expliquée par le
mode NLPCA. Ceci est montré par une analyse des données d’anomalie de température de la surface de la mer
dans le Pacifique tropical, où le phénomène El Niño–oscillation australe (ENSO) se manifeste. Une deuxième
lacune de la méthode NLPCA est que la courbe C vient avec une paramétrisation arbitraire et ne possède pas
de signification physique. Ici, la courbe est reparamétrisée par longueur d’arc. Ceci permet le calcul de séries
temporelles plus significatives, ce que nous illustrons au moyen d’une analyse de l’oscillation quasi biennale
dans les données sur le vent zonal stratosphérique équatorial.
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1 Introduction
A number of papers have recently appeared which are con-
cerned with the Non-linear Principal Component Analysis
(NLPCA) method and its applications to climate data (Hsieh,
2001a; Hamilton and Hsieh, 2002; Monahan et al., 2000;
Monahan, 2001). First proposed by Kramer (1991), NLPCA
is a neural-net-based generalization of principal component
analysis (PCA), using an autoassociative multi-layer percep-
tron network architecture. The purpose of this paper is to
introduce two improvements to the NLPCA method that were
devised following a re-examination of the El Niño-Southern
Oscillation (ENSO) study of Monahan (2001; hereafter
M2001) and the stratospheric Quasi-Biennial Oscillation
(QBO) investigation of Hamilton and Hsieh (2002; hereafter
HH2002). First, it will be shown that because of the nature of

the mapping from the data space to the NLPCA curve used by
M2001 in the NLPCA application to tropical Pacific sea sur-
face temperature (SST) anomalies, the analysis underesti-
mates the closeness with which the curve approximates the
observed SST data. Second, we show that because of the
nature of the curve parametrization used in HH2002, there are
shortcomings in their QBO index time series, which can be
removed by introducing an arc-length parametrization for the
aforementioned curve.

Although the discussion and examples given here are in the
context of NLPCA, the above shortcomings are also present
in, and the improvements are valid for, a recent neural-net-
based non-linear generalization of canonical correlation
analysis (see Hsieh, 2001b). We also note that the existence
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of the above two shortcomings were recognized in Malthouse
(1998), hereafter M98. However, to the best of our knowl-
edge, this is the first time that the particular consequences of
these shortcomings have been examined.

It should be mentioned that Kramer’s autoassociative neur-
al network NLPCA is only one of several approaches to non-
linearly generalizing PCA (Cherkassky and Mulier, 1998).
Another common approach, the principal curves method
(Hastie and Stuetzle, 1989), finds a non-linear curve which
passes through the middle of the data points. Malthouse
(1998) made a comparison between principal curves and
Kramer’s NLPCA model. Unfortunately, when testing a
closed curve solution, he used Kramer’s NLPCA (which is
suitable only for open curves) instead of the version of
NLPCA proposed by Kirby and Miranda (1996) (which han-
dles closed curves well). There is no conclusive study that
shows which approach is superior. While the neural network
NLPCA method has the advantage of using analytical map-
ping functions, its projection function may be sub-optimal. In
our study, we correct the problems in NLPCA by using con-
cepts from principal curves, namely the projection index and
arc-length parametrization.

With synthetic data, it is easy to demonstrate the superior-
ity of non-linear techniques to linear techniques. However,
with real data, non-linear techniques may not produce better
results than linear techniques. This happens if the data record
is short and noisy, or the underlying dynamics are linear. But
for strong signals like ENSO and QBO, the advantage of non-
linear techniques over linear techniques is easily seen (Hsieh,
2001a,b; HH 2002).

The remainder of this paper is structured as follows. In
Section 2 a perspective of the NLPCA method is given. In
Section 3 the first improvement, the projection index, is intro-
duced and applied to ENSO data. In Section 4 the arc-length
parametrization is described and applied to the QBO. The
conclusions are given in Section 5, and an Appendix outlines
the method by which we implement the projection index and
the arc-length parametrization.

2 A perspective of NLPCA
The problem addressed by NLPCA is as follows: suppose a
multivariate dataset clearly exhibits a non-linear structure but
the functional form of the non-linearity is unclear. We would
like to establish a procedure for producing a curve which
passes through the middle of the dataset, and we would like
the procedure itself to choose the functional form of the
curve. In the case where we specify that the curve be a
straight line, a widely used technique to fit such a dataset is
PCA. PCA extracts eigenvectors representing spatial patterns
(also called loadings), and associated time coefficients called
principal components (PCs).

For an introduction to the NLPCA method, see the original
paper by Kramer (1991), or the review paper by Hsieh (2003).
Here we describe only those aspects of NLPCA which are rel-
evant to the improvements introduced in this paper. NLPCA
should be understood as a method for searching a non-para-

metric family of functions for the member which best satisfies
a certain condition (to be defined shortly) known as the selec-
tion criterion. The family of functions being searched has the
property that each of its members can be written naturally as
the composition of two functions, C : R → Rn and P : Rn →
R. C is therefore a parametrized curve in Rn, and the compo-
sition C •• P is a map from Rn to the curve parametrized by C.
The condition to be satisfied is that the root mean square (rms)
distance between the data points xi ∈ Rn and their images
under C •• P (xi) should be minimized. This is the same
requirement used in iterative versions of PCA, where the first
eigenvector gives the straight line which minimizes the rms
distance from the data to the line.

The family of functions from which C •• P is to be chosen
must be specified in advance, and given any continuous func-
tion F, a family may be chosen so as to contain a member
which approximates F as closely as desired (see Cybenko,
1989). However, once chosen, the family of candidate func-
tions remains fixed during the search. Moreover, if the chosen
family is too large, a problem known as over-fitting is
encountered. Over-fitting occurs when the curve fits the data
too closely so that it models noise in the data as well as any
underlying relationships that may be present (in extreme
cases, a zigzag curve could be chosen to pass through all data
points). The usual method of avoiding over-fitting is to
restrict heavily the family of curves from which C is to be
drawn. However, this practice exacerbates the problems asso-
ciated with the projection function which are discussed in the 
following section.

3 The projection index and application to ENSO
It should be realized that C •• P is not a projection function in
the usual sense. First, it is not idempotent, i.e., C •• P does not
map points on C to themselves, as the projection function was
trained with only a finite sample, and with a finite number of
neurons. Second, it does not in general map points xi ∈ X to
their closest neighbours on C. This problem is illustrated in
Fig. 1, which shows the result of analysing a synthetic dataset
with NLPCA. The points mark the elements in the dataset and
the parabola-like curve C is the NLPCA approximation to the
data. The curves which cut C are lines of constant projection
under C •• P: all points along a given intersecting curve are
mapped by C •• P to the same point on C. As can be seen in
Fig. 1, the errors are significant over large areas of the data-
space, but are particularly severe near the middle of the
parabola. In this region points lying close to the arms of the
parabola are mapped far down the arm towards the centre of
the curve.

This problem is an artefact of the method and not specific to
this particular analysis. It arises from the fact that C •• P is
required to be a continuous map, and is exacerbated by the lim-
itations placed on the family of candidate curves to avoid over-
fitting. Briefly, to satisfy the selection criterion, C •• P must
project points from the data space to their closest neighbours on
C. However, between the two arms of the parabola lies a line of
‘ambiguity’ points (Hastie and Stuetzle, 1989; M98), each 
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having two closest neighbours on the parabola (one on each
arm). Points lying slightly to the left of this line should be
mapped to the parabola’s left arm, and points lying to the right
should be mapped to the parabola’s right arm. This implies a dis-
continuity in the projection map. The only way to approximate
this discontinuous function with a continuous one is to map
points around the line of ambiguity towards the middle of the
parabola, implying a region of inaccuracy near the line of ambi-
guity, because points neighbouring the line of ambiguity must be
fanned out by the mapping to cover the middle of the parabola.
To see this behaviour, observe the dashed line and its two neigh-
bours on either side in Fig. 1. At the top of the figure, these five
lines lie close together in the centre of the parabola near the line
of ambiguity. However, their intersections with C cover a large
portion of the centre of the parabola. If the family of functions
from which C •• P is chosen is sufficiently large, this region of
ambiguity can, in theory, be made as small as desired. However,
by doing so the problem of over-fitting is again encountered, ren-
dering this cure undesirable. Further discussion may be found in
M98 where his Fig. 4 is particularly illuminating. 

The function P is essential to the algorithm by which 
C •• P (and therefore C) is selected. However, after C •• P has
been found, the curve C is known independently of P. The
errors in projection associated with the composite map C •• P
can therefore be avoided by discarding C •• P in favour of the
projection index Pr, which is defined to be the function which

sends points in the data space to their closest neighbours on C
(Hastie and Stuetzle, 1989). It should be noted that algorithms
to approximate Pr as closely as desired are easy to implement
(see Appendix). The following text illustrates the advantage
of doing so.

A measure of the extent to which a low-dimensional sum-
mary L (here L is either the NLPCA C or the first PCA eigen-
vector) of a dataset X captures the essential features of X is
called the fraction of explained variance (FEV). The FEV is
defined as follows: 

where the xi are the points in X, the numerator is the sum of
the squares of the distance of the data points from their pro-
jections onto L, and the denominator is the total variance of
the dataset, assuming without loss of generality that the
dataset has zero mean.

M2001 found empirically that NLPCA shares the partition
of variance property with PCA, i.e., that the variance of the
dataset is equal to the sum of the variance of its projection
onto C plus the variance of the residuals:
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Fig. 1 Inefficiencies in C •• P. The scatter-plot is of the points in a synthetic bivariate dataset. The parabola-like curve C is the NLPCA approximation of the
data, and the transecting curves are isopleths of C •• P. If T is one of the transecting curves, then each of the points along T is projected to the same point
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NLPCA has been judged to be superior to PCA because the
FEV associated with C is generally greater than the FEV asso-
ciated with the first PCA mode. Since Pr is by definition the
map that minimizes the quantity (Pr (xi) – xi)

2 for each point 
xi ∈ X, (thereby maximizing the FEV), C •• P ≠ Pr implies that
using C •• P in place of Pr in the computation of the FEV
underestimates the closeness with which NLPCA approxi-
mates the data.

We illustrate with an example. M2001 performed an
NLPCA of the tropical Pacific SST. Here we performed
NLPCA on the same data using code obtained from Hsieh
(2001a). We then implemented a version of Pr and compared
the NLPCA FEV using both C •• P and Pr. The family of
curves from which C •• P was chosen was the same as in
M2001. The data analysed were the time series of the first ten
PCs of the monthly Pacific SST anomalies from the National
Oceanic and Atmospheric Administration for the period
January 1950 to April 1999. The results of our analysis are
shown in Fig. 2: the projections of the data onto the PC1–PC2
plane appear as points in a scatter plot, and the curve passing
through the middle is the projection of the NLPCA solution
onto this plane.

For us the NLPCA algorithm converged to a curve with an
FEV of 62.6% as computed with C •• P, which is an improve-
ment on the FEV = 57.7% associated with the first PCA mode.
When the FEV was re-computed using the projections of the
data onto C using Pr, this same curve had an FEV of 63.1%,
revealing that errors in the projection function had caused the

FEV to be underestimated by half a percentage point. This
half-percentage point difference is about 10% of the improve-
ment in the FEV achieved by using NLPCA instead of PCA.

For this particular example, the difference using the
improvement is small; we chose the example because it
comes from the literature. In general, the more data points
there are in regions where C •• P is likely to be inaccurate (i.e.,
near the ambiguity points), the greater the difference our pro-
cedure is likely to make. To illustrate this, we turn our atten-
tion back to the artificial data from Fig. 1, where the data were
generated so that the first PCA explains 50% of the variance.
Here, the FEV associated with the non-linear PC is 86.5%
under C •• P, whereas under Pr the FEV increases to 91.2%.
This is an increase of almost 5%. The possibility therefore
exists that unless the projection index is used, future applica-
tions of NLPCA will significantly underestimate the degree to
which NLPCA characterizes the data.

4 Arc-length parametrization and application to the QBO
The function Pr associates with each data point xi a number 
λi = Pr (xi) which is called the score value of the data point.
These score values have been used to produce time series of
the projections of the data onto the NLPCA mode (M2001,
HH2002). The score values thus produced serve as an index
of the phenomenon being studied (ENSO in the case of
M2001, the QBO in the case of HH2002), and the time series
of these score values is a representation of how the phenom-
enon is evolving with time.
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ed onto this plane. The NLPC explains 62.6% of the variance using the NLPCA projection function, but under the projection index this increases to 63.1%.



There are two shortcomings to using these time series. We
have already seen in Section 3 that C •• P inaccurately projects
data points onto the NLPCA mode; this means that the score
values of the data points will also be inaccurate. This source
of inaccuracy is eliminated once Pr has been substituted for 
C •• P. The second shortcoming arises from the fact that C, as
produced by the NLPCA algorithm, is not parametrized by
arc length, hence is not easily interpretable. We will discuss
the way in which a non-arc-length parametrization distorts
time series in the context of the results of HH2002.

Using a version of the NLPCA method proposed by Kirby
and Miranda (1996), HH2002 analyse the QBO in the equa-
torial stratospheric zonal wind data (Naujokat, 1986). The
data are the monthly means of the zonal wind components
taken at 70, 50, 40, 30, 20, 15 and 10 hPa, from September
1967 to December 2000 for a total of 540 monthly values.
These data from the seven heights were treated as points in a
seven-dimensional data space, and a version of NLPCA was
performed in which the family of curves from which C is cho-
sen was a family of closed curves. The curve C which results
from the analysis is therefore parametrized by a cyclic vari-
able of period 2π which HH2002 call θ. In this case, the orig-
inal analysis was available to us (W.W. Hsieh, personal
communication, 2001), and so we are in possession of the
functions C and P resulting from their study.

The phase of the QBO has been difficult to define, since the
wind change occurs at different times for different vertical

levels. The NLPCA approach of HH2002 was successful in
extracting the phase θ using data from all seven levels. The
phase of the QBO is known to be related to the stratospheric
polar winter temperature anomalies in the northern hemi-
sphere (the Holton-Tan effect), and the phase from HH2002
identified a stronger effect than previous studies.

HH2002 constructed a time series of the QBO score values,
which is replotted here in the top panel of Fig. 3. HH2002
noted that θ seems to progress systematically more quickly
through some of its values than others. A goal in HH2002 is
to construct a composite of the QBO by tracking the average
progress of the QBO through phase space. This is done in two
steps: first, an NLPCA of the zonal wind data is performed,
resulting in the curve C. The average progress of the projec-
tions of the QBO onto C (where the average is taken over
many QBO cycles) is then to be followed, taking equal time-
interval snapshots of the vertical wind structure. In order to
obtain equal time-interval snapshots, they cannot simply take
snapshots at equal θ-intervals; rather, they must compensate
for the fact that θ routinely advances through some values
more quickly than through others. To do this, they divide C
into a number of segments such that θ increases by a uniform
amount over each segment. They then count how often the
projection of the QBO onto C lands in each segment, and rea-
son that the QBO must be spending more time near those seg-
ments where its projection is often found. When calculating
the final composite, they therefore weigh each segment
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according to the frequency with which it contains the projec-
tion of the QBO.

We claim that part of the variability in the speed with which
θ increases is a result of the fact that θ does not increase pro-
portionally to the arc length along the curve; the remaining
part of this variability is a representation of a genuine variation
in the speed at which the QBO advances through phase space.
Moreover, by re-parametrizing C by arc length, we show that
we can separate these two sources of variability, thereby iso-
lating the true variability with which the QBO progresses
through phase space. This is interesting in its own right, and it
may also be used to construct a composite QBO as in HH2002
where the systemic biases associated with the arbitrary param-
etrization have been entirely removed.

In order to see the manner in which the change in score
value with time is influenced by the choice of parametriza-
tion, consider C under two different parametrizations. In what
follows C(θ) will represent the curve C with the variable-
speed parametrization supplied by the NLPCA algorithm,
whereas C(S)  will denote the re-parametrization of C by arc
length S.

In general, the values of S and θ associated with a given
point on C will not be the same, and thus θ may be considered
as a function of S, i.e., θ = θ(S). The nature of NLPCA is such
that θ(S) is a differentiable function, and since both θ and S
are normalized cyclical variables of period 2π, the value of
dθ/dS will average to one when integrated over one period.

The true speed with which the projection of the data moves
along C is, by definition, dS/dt. Differentiating θ with respect
to time via the chain rule yields

and so dθ/dt differs from the true rate of propagation by a fac-
tor of dθ/dS. Thus dθ/dt will underestimate the true speed of
progression where dθ/dS < 1 and overestimate this speed
where dθ/dS > 1.

A comparison of θ and S is shown in Fig. 4. In this figure,
the monotonically increasing line is the function θ(S), and the
line with local extrema is dθ/dS. It is evident that the NLPCA
parametrization of C is far from being of unit speed, as the
derivative dθ/dS varies from a minimum of 0.47 at S = –0.29
to a maximum of 2.04 at S = 1.77, which is a variation of a
factor of four. The rate of change dθ/dt should therefore be
expected to be a poor estimator of dS/dt.

That this is the case can be seen by examining Fig. 3. In the
top panel, the values of θ were computed with C •• P, and
therefore exhibit both types of shortcoming described above.
The time series points in the middle panel are the projections
of the data points onto the curve made with Pr, and thus the θ
values plotted correspond to slightly different points on C than
do the values in the top panel. Interestingly, these two time
series are virtually identical. This is due to the fact that the sig-
nal-to-noise ratio of the QBO is very high, and therefore 
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few points are far from C. In this case, unlike the case of the
ENSO anomalies analysed above, C •• P is clearly a close
approximation to Pr. In order to quantify the accuracy, we
note that the FEV as computed with C •• P is 0.948, whereas
the FEV computed using Pr is 0.949.

It is the bottom panel in Fig. 3 which makes clear the effect
of the re-parametrization. This plot of the time series of S is
an objective estimator of the position of the QBO in phase
space. The region –1.20 ≤ S ≤ 0.73, lying between the dot-
dashed lines in this panel corresponds to the region –0.69 ≤ θ
≤ 0.61 lying between the dot-dashed lines in the top panel.
Examination of this portion of the time series in the top panel
reveals what seems to be a systematic slowing of the QBO for
these values of θ. Examination of the corresponding portion
of the time series parametrized by arc length shows little if
any systematic slowing, indicating that the apparent slowing
in the top panel was an artefact of the NLPCA parametriza-
tion, and not a property of the QBO.

We now use the time series in the top panel of Fig. 3 to
obtain a true estimate of the speed at which the QBO moves
through phase space. The speed of the QBO at any time t0
may be approximated by a forward difference scheme, com-
puting the distance in phase space between the projections of
successive observations of the QBO onto C, and dividing by
the time between observations (one month). A scatter plot of
the results is shown in Fig. 5, where the abscissae are the
score values measured by the arc length of the QBO observa-
tions, and the ordinates are the estimates of the QBO speeds

in phase space. The curved line is a kind of local average of
the data points, and is the result of a local averaging proce-
dure called robust locally averaged scatter-plot smoothing
(see Cleveland, 1979). This curve, which we denote 〈dS/dt〉,
represents an average speed of propagation of the QBO and is
a function of S. It confirms our above observations: the region
–1.20 ≤ S ≤ 0.73 is characterized by an average dS/dt, and is
not slow, contrary to what the top panel of Fig. 3 would have
had us believe.

Note that the average speeds represented by the curve in
Fig. 5 are not the same as the speed dθ/dS obtained from 
Fig. 4. The former is dS/dt and is a true estimate of the speed
of progression of the QBO through phase space. The latter is
a measure of the extent to which the true speed of the QBO
will be distorted if it is measured by dθ/dt.

The systematic speeding up of the QBO near S = –2 does
seem to be genuine, as dS/dt (in dimensional units) reaches its
absolute maximum of 16.5 m s–1 mo–1 at S = –2.2. This cor-
responds to the middle of the easterly to westerly transition.
The absolute minimum of 6.6 m s–1 mo–1 is reached in the
middle of the westerly to easterly transition at S = 1.5. This is
in keeping with the well-known phenomenon that the easter-
ly to westerly transition is more rapid than the westerly to
easterly transition. In terms of the average speed of propaga-
tion through phase space, the one transition is about twice as
fast as the other.

We now create a new composite QBO using the re-param-
etrized Non-linear Principal Component (NLPC) and the
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average speed 〈dS/dt〉 from Fig. 5 as follows: we chose S = 0
as an arbitrary starting point. We then followed S in the direc-
tion of QBO propagation, progressing at a speed equal to
〈dS/dt〉, so that we were able to take equal time interval snap-
shots of the reconstructed QBO. We re-emphasize the fact
that 〈dS/dt〉 is a function of S: it is the local average-speed of
the propagation of the QBO through phase space, the average
being taken over many cycles. These snapshots were com-
piled into the composite shown in Fig. 6. In this way we used
a true picture of the speed at which the QBO propagated and
avoided the shortcomings associated with the smoothed-fre-
quency histogram approach used in HH2002. Our approach is
only possible once the re-parametrization has been done. The
composite appearing in Fig. 6 can be compared with that
shown in Fig. 5 of HH2002.

5 Conclusions
Neural-net-based generalizations of PCA and Canonical
Correlation Analysis (CCA) have been developed which are
capable of approximating low-dimensional structures present
in complex datasets. However, the family of functions used as
candidate data summaries for NLPCA has at least two unde-
sirable properties. First, when used to project the data onto the
NLPCA, the projection function does not project points to
their nearest neighbours; one consequence is that the fraction
of variance explained by the NLPC is underestimated. 

In Section 3 we showed that the NLPCA approximation to
the ENSO data showed an improvement in FEV over the first

PC of 5% when P was used, but the gains were slightly larger
when Pr was used instead, being of the order of 5.5%. We
showed also that this effect has the potential to be quite signifi-
cant by examining an artificial dataset where the discrepancy in
FEV was over 5%. In Section 4 we demonstrated that the NLPC
curves produced by NLPCA are not parametrized by arc length,
and hence time series of the score values of the data are subject
to arbitrary distortions. Since these distortions are systematic in
nature, they can lead to misleading time series which display
artificial structures, as seen in the QBO study of HH2002. The
NLPCA codes used in Sections 3 and 4 are downloadable from
our website http://www.ocgy.ubc.ca/projects/clim.pred/.
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Appendix: Implementation of the projection map and
arc-length parametrization
In order to implement the projection index Pr and the arc-
length parametrization S, we first approximate C with an open
n-sided polygon Cr whose n + 1 vertices lie on C. This is done
as follows.

We first choose the positions of the initial and final vertices
of Cr. In the case where Cr is a closed curve, the initial vertex
v1 of Cr is chosen arbitrarily from the image of C, and the final
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Fig. 6 A composite QBO, computed by following the NLPCA at its local average-speed 〈dS/dt〉 through phase space and taking equal time interval snapshots.
The contour interval is 5 m s–1, with positive (i.e., westerly) contours indicated with solid lines, negative contours by dashed lines, and zero contours
by thick lines.



vertex vn + 1 is set equal to v1. When C is an open curve, we
set v1 = limθ→–∞C(θ), and vn + 1 = limθ→∞C(θ). The existence
of these limits (which we estimate numerically) is guaranteed
by the functional form of C.

The positions of the internal vertices vi, i ∈ (2,…, n) are
chosen by computing points along C at n – 1 evenly spaced
values of its parameter θ and setting vi = C(θi), where i ∈
(2,…, n). The interval between these θ-values is chosen small
enough so that

Here ε is a positive user-defined parameter which sets the
accuracy of the approximation. We note that because C is dif-
ferentiable it is rectifiable (i.e., can be approximated by
straight line segments), and so ε may be chosen small enough
to make the maximum distance between C and Cr as small as

desired. The rectifiability of C, together with the fact that its
image has compact support, guarantees the existence of a
finite set of θ values which satisfy Eq. (1).

The projection index and the arc-length parametrization are
now easy to implement. To implement Pr we observe that if
x is any point in the data space, its nearest neighbour on Cr
may be found by computing its projection x onto each of the
line segments comprising Cr and then setting Pr(x) equal to
the closest of these points. To parametrize by arc length, we
note that if x′ is any point lying on Cr, it will lie between two
vertices vi and vi + 1. The distance as measured along Cr from
v1 to x′ may be computed by summing the lengths of all line
segments lying between v1 and vi, and adding the distance 
�x′ – vi�. At an ambiguity point, there are at least two closest
points on Cr, the projection index chooses the point on Cr
with the largest arc length.
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