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Abstract. The presence of nonlinear terms in the gov-
erning equations of a dynamical system usually leads to
the loss of predictability, e.g. in numerical weather pre-
diction. However, for the El Nĩno-Southern Oscillation
(ENSO) phenomenon, in an intermediate coupled equatorial
Pacific model run under the 1961–1975 and the 1981–1995
climatologies, the latter climatology led to longer-period
oscillations, thus greater predictability. In the Lorenz (1963)
3-component chaos system, by adjusting the model parame-
ters to increase the nonlinearity of the system, a similar in-
crease in predictability was found. Thus in the ENSO and
Lorenz systems, enhanced nonlinearity from changes in the
governing equations could produce longer period oscillations
with increased predictability.

1 Introduction

Predicting the future state of the El Niño-Southern Oscilla-
tion (ENSO), given its present state, is an important prob-
lem in climate research. Interdecadal changes in ENSO pre-
dictability are widely noted in different numerical models
(Ji et al., 1996; Chen et al., 2004). An (2004) pointed out
that the interdecadal change in predictability was related to
the interdecadal change in ENSO asymmetry (between the
warm El Niño states and the cool La Niña states) and non-
linearity. Changes in the mean climate state could produce
changes in ENSO properties, including predictability (Kirt-
man and Schopf, 1998; An and Wang, 2000; Ye and Hsieh,
2006). Changes in ENSO properties under increased green-
house gases have been found using datasets from the 4th
Assessment Report of Intergovernmental Panel on Climate
Change (IPCC-AR4) (Ye and Hsieh, 2008).
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There is evidence that nonlinear effects play an important
role in ENSO properties. M̈unnich et al. (1991) suggested
that nonlinear effects, more specifically a period-doubling bi-
furcation, led to the 4-yr ENSO period, based on their sim-
ple delayed-oscillator model. Nonlinear effects on the ENSO
period were also discussed by Eccles and Tziperman (2004),
while An and Jin (2004) showed that the nonlinear terms in
the heat equation were responsible for the remarkable asym-
metry between the warm and cool ENSO states. However,
there has been some debate on whether ENSO is primarily
a self-sustained nonlinear system (Zebiak and Cane, 1987;
Jin et al. 1994) or a damped linear system with stochastic
atmospheric forcing (Penland and Sardeshmukh, 1995), i.e.
whether the role of nonlinearity in ENSO is primary or sec-
ondary. In this paper, we concentrate on the first possibil-
ity to explore the nonlinearity and ENSO interdecadal pre-
dictability. An intermediate coupled model data based on
two different climatological mean states (corresponding to
the 1961–1975 and the 1981–1995 climate regimes) were
used to analyze the nonlinearity, period and predictability.
We also examined the well-known Lorenz nonlinear system
(Lorenz, 1963) for comparison. Section 2 contains the re-
sults from the coupled model, where the nonlinearity, period
and predictability of ENSO based on different climatological
mean states are shown. Section 3 presents the results from
the Lorenz system.

2 Intermediate coupled model results

The modified Zebiak and Cane (1987) coupled model
(see Ye and Hsieh, 2006) was used to simulate ENSO for
2300 years, with the last 2100 years of data analyzed. In this
model, the background seasonal climatologies (sea surface
temperature (SST), oceanic surface layer currents and as-
sociated upwelling/downwelling, surface wind stress (WS)
and surface wind divergence) were prescribed with the data
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from the 1961–1975 regime and the 1981–1995 regime in
two separate model runs. A 3-month running mean was ap-
plied to the coupled model data. The 2100-year data record
was divided into 21 equal segments, allowing us to compute
ensemble means over 21 members, instead of the single runs
reported by Ye and Hsieh (2006).

One way to characterize the asymmetry between El Niño
and La Nĩna is by nonlinear principal component analysis
(NLPCA) (which fits a curve to account for the maximum
variance in the dataset, instead of a straight line as in clas-
sical PCA) (Hsieh, 2004). The spatial patterns from the
first NLPCA mode averaged over 21 ensemble members for
strong El Nĩno and La Nĩna are shown in Fig.1. For strong
El Niño the center of the SST anomalies (defined by the
maximum value of the anomalies, as marked by the “H”
in Fig. 1c) under the 1981–1995 climatology had an east-
ward displacement of about 11◦ relative to that under the
1961–1975 climatology (as marked by the “H” in Fig.1a).
The asymmetry change can be seen more clearly in the SST
anomalies along equator averaged between 5◦ S and 5◦ N
(Fig. 1e and f). For La Nĩna, although the low “L” was not
shifted (Fig.1b and d), there was a westward displacement
of cool anomalies in the later regime (Fig.1f). The asym-
metry between El Nĩno and La Nĩna, hence the nonlinearity,
increased under the 1981–1995 climatology.

The histogram of the first principal component (PC) time
series for all ensemble members are shown in Fig.2. The
frequency of occurrence for the strong El Niño (correspond-
ing to large positive PC1) is higher under the 1981–1995
climatology, while the occurrence frequency for the strong
La Niña (corresponding to large negative PC1) is lower un-
der the 1981–1995 climatology. A similar conclusion can
be obtained from the Niño 3 index results (averaged SST
anomalies in 90◦–150◦ W, 5◦S–5◦ N). The number of times
when the Nĩno 3 indices are greater than 3◦C are 163 and
238 months for the pre-shift and post-shift regimes, respec-
tively.

One way to characterize the nonlinearity in the data is to
compare the percentage variance explained by the first mode
from PCA with that from NLPCA (Hsieh, 2004). Let

δ=(PNL−PL)/PL, (1)

where PNL is the percentage variance explained by the
NLPCA mode 1, andPL, by the (linear) PCA mode 1 (Ye
and Hsieh, 2006).

The ensemble mean±1 standard error forδ is 8.1%±0.1%
for the simulation under the 1961–1975 climatology and
8.8%±0.1% under the 1981–1995 climatology, indicating
enhanced nonlinearity under the latter climatology. This en-
hanced nonlinearity arose from the greater asymmetry found
in the SST anomaly patterns between El Niño and La Nĩna
under the 1981–1995 climatology (Ye and Hsieh, 2006). The
asymmetry in turn is produced by the nonlinear terms in the
heat budget of the upper ocean (An and Jin, 2004). Ye and

Hsieh (2006) showed that in this simple model the change in
ENSO properties was mainly due to changes in the climatol-
ogy of the surface wind and surface wind divergence than to
changes in the climatology of the upper ocean.

An alternative, dynamical measure of the nonlinearity is
the size of the nonlinear terms relative to the size of the linear
terms in the ocean surface-layer temperature equation in the
ENSO coupled model. From Ye and Hsieh (2006), the equa-
tion is

∂T

∂t
= −u1· 5 (T +T )−u1· 5 T − {M(ws+ws)−M(ws)}

×
∂T

∂z
−M(ws+ws)

T −Te

H1
−αsT −Kt

T −Te

H1
+Ah 4h T , (2)

where the last two terms are used to simulate vertical mixing
and horizontal diffusion, respectively. Hereu1(x, y, t) and
ws(x, y, t) are the prescribed climatological monthly mean
horizontal current and upwelling in the surface layer respec-
tively, T (x, y, t) is the prescribed mean SST,∂T (x)/∂z

the prescribed mean vertical temperature gradient, the mean
surface layer depthH1=50 m, the diffusion coefficient
αs=(125 day)−1, Kt=2.5×10−5 m s−1, Ah=2000 m2s−1, the
functionM is defined by

M(x)=

{
0, x≤0
x, x>0

(3)

and the entrainment velocity is

ws=H1(
∂u1

∂x
+

∂v1

∂y
). (4)

The entrainment temperature anomaly,Te, is given by

Te=γ Tsub+(1−γ )T , (5)

whereγ =0.75, andTsub is calculated from the model upper-
layer depth anomalyh by a nonlinear empirical parameteri-
zation scheme using a neural network model (Ye and Hsieh,
2006). We then compare the nonlinear terms relative to the
linear terms in Eq. (2) by computing the ratio

βSST=
〈|u1· 5 T |+| {M(ws+ws)−M(ws)} ×

∂T
∂z

|+

〈|u1· 5 T |+|u1· 5 T |+|αsT |+

|M(ws+ws)
T −Te

H1
|+|Kt

Te

H1
|〉

|Kt
T
H1

|+|Ah 4h T |〉
(6)

where〈...〉 denotes the temporal mean. The averageβSST in
the Niño 3.4 region (120◦ W–170◦ W, 5◦ S–5◦ N) is 0.77 for
the simulation under the 1961–75 climatology and 0.85 un-
der the 1981–1995 climatology, while over the whole tropical
Pacific,βSST is 0.72 (earlier climatology) versus 0.75 (latter
climatology). ThusβSST also indicates enhanced nonlinear-
ity under the latter climatology.
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Fig. 1. The SST anomalies (◦C ) from the leading NLPCA mode when the NLPC takes its(a) maximum value (strong El Niño)
and(b) minimum value (strong La Niña), as averaged over 21 ensemble members in the experiments using the climatology
of the oceanic and the atmospheric fields for the 1961-1975 regime; and similarly for the 1981-1995 regime in(c) and(d),
respectively. “L” and “H” mark the location of the lowest and highest values, respectively, and areas≥8◦C are shaded in(a)
and(c). (e) is the average SST anomalies between 5◦ S and 5◦ N of panels(a) and(c), and(f) is the average SST anomalies
of (b) and(d), where the thick lines are for the 1961–1975 regime and thin lines for the 1981–1995 regime, with error bars
showing±1 standard error.
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Figure 2: Histogram of the �rst PCs for all 21 members for pre-shift 
limate state run and for post-shift
limate state run.
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Fig. 2. Histogram of the first PCs for all 21 members for pre-shift climate state run and for post-shift climate state run.

Multi-layer perceptron neural network (NN) models have
become popular for performing nonlinear regression, as these
models are capable of representing any nonlinear functional
relation y=f (x) to arbitrary accuracy with generally far
fewer parameters than polynomials (Bishop, 1995). The av-
erage SST anomaly in the Niño 3.4 region was predicted
at lead times from 0 to 15 months by nonlinear regres-
sion using NN models with Bayesian regularization as pro-
vided by the MATLAB neural network toolbox. At timet ,
the 2 leading principal components from a combined PCA
of the normalized SST, zonal and meridional WS anoma-
lies were used as predictors to forecast the Niño 3.4 SST
anomaly att+lead time. The ensemble-averaged cross-
validated correlation coefficients and mean squared error
(MSE) between the predicted and actual Niño 3.4 indices
from our coupled model can be used to characterize ENSO
predictability (Fig.3), where enhanced predictability under
the 1981–1995 climatology can be seen when the lead time
exceeds 3 months. For comparison, the predictability based
on linear regression (as used by Ye and Hsieh, 2006) is lower
than that based on nonlinear regression (Fig.3), but gives the
same conclusion, i.e. using the 1981–1995 climatology in the
coupled model enhanced the ENSO predictability.

Fourier spectral analysis performed on the Niño 3.4 in-
dices from the 2 coupled model runs revealed that the main
spectral peak shifted from a period of 49 months under
the 1961–1975 regime climatology to 52 months under the
1981–1995 regime climatology (Fig.4). The lead times for
attaining a correlation skill of 0.95 by nonlinear regression
(Fig. 3a) are 3.4 and 3.8 months for the pre- and post-
1980 climatologies, respectively. Dividing these predictabil-
ity lead times by the respective spectral periods of 49 and
52 months for the two regimes yielded a lead time equal to
0.069 and 0.073 cycle for two regimes, respectively. In other
words, when predicting 0.07 cycle ahead, the nonlinear re-
gression method can attain a correlation skill of 0.95 in this
noiseless coupled model of ENSO under both the pre- and
post-1980 climatologies.

Chen et al. (2004) argued that an increased ENSO ampli-
tude in the post-1980 regime led to increased predictability.
In our noiseless model, an increased in amplitude does not
improve the signal-to-noise ratio (hence the predictability).
Although the increase in nonlinearity can be associated with
increase in both the amplitude and period, in a noiseless
ENSO system, the increased in predictability comes from the
increased period only, whereas in a noisy system, increased
predictability comes from both the increase in period and am-
plitude.

Nonlin. Processes Geophys., 15, 793–801, 2008 www.nonlin-processes-geophys.net/15/793/2008/
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Fig. 3. Ensemble mean predictability and MSE of the Niño 3.4
SST anomaly index, as given by the cross-validated(a) correlation
and (b) MSE between the predicted and actual index in the cou-
pled model using climatologies from the 1961–1975 regime (solid
lines) and the 1981–1995 regime (dashed lines). The thick lines are
from nonlinear regression, the thin lines, linear regression. Cross-
validation was performed by dividing each 100-year data record
into five segments, where for each segment chosen to test the fore-
cast correlation skills, the other four were used to build the forecast
model. Error bars indicate±1 standard error of the ensemble mean.

In the stability analysis of Federov and Philander (2001),
increasing the mean surface temperature amounts to increas-
ing their model parameter1T (the mean temperature dif-
ference across the thermocline), which from the increased
stability, leads to slower growth of instabilities hence longer
ENSO period as seen in their Fig. 12a. This change in pe-
riod is not a linear effect – when we turn off all the nonlin-
ear terms in the surface temperature Eq. (2) of our coupled

0.015 0.016 0.017 0.018 0.019 0.02 0.021 0.022 0.023 0.024 0.025

1

2

x 10
7

S
pe

ct
ru

m

Frequency (1/months)

1/49

1/52

Figure 4: Spe
trum of the Ni~no 3.4 SST anomaly index in the 
oupled model using 
limatologies from thepre-shift regime (solid 
urve) and post-shift regime (dashed 
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Fig. 4. Spectrum of the Nĩno 3.4 SST anomaly index in the coupled
model using climatologies from the pre-shift regime (solid curve)
and post-shift regime (dashed curve).

model, the SST anomalies display no longer predominantly
interannual variability at the 4–5 year period, but only vari-
ability mainly around the annual period for both the pre- and
post-1980 climatologies. Thus the change in the climatology,
with warmer SST in the post-1980 regime (Ye and Hsieh,
2006, Fig. 3), would induce stronger nonlinearity and longer
ENSO period, thereby enhancing the predictability.

There is a debate regarding the processes that limit the pre-
dictability of ENSO (Kirtman, 1998). Understanding how
intraseasonal variations in the tropical Pacific affect ENSO
prediction and predictability is complicated by the fact that
there is no clear understanding of the mechanisms that lead
to its irregularity and ultimately the loss of predictability. It
was argued that intraseasonal variability acts as a fundamen-
tal limit to ENSO predictability (Kleeman and Moore, 1997).
However, at least for the Zebiak-Cane coupled model, the ef-
fects of the intraseasonal forcing generally play a minor role
to ENSO (Zebiak, 1989). Since the experiments are noise
free in this paper, intraseasonal variability is not an essential
component of ENSO.

3 Lorenz attractor data

We next turn to a very different nonlinear system to see if the
same behavior can be found. The Lorenz (1963) nonlinear
system is given by

dx/dt = −ax+ay, (7)

dy/dt = −xz+bx−y, (8)

dz/dt = xy−cz, (9)

www.nonlin-processes-geophys.net/15/793/2008/ Nonlin. Processes Geophys., 15, 793–801, 2008
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Table 1. Ensemble mean results for Lorenz systems with different parameter pairs.

Case 1 2 3 4
(Lorenz, 1963) (Basu, 2002) (Elsner and Tsonis, 1992)

param (a, b, c) (10, 28, 8/3) (13, 36.4, 3.47) (16, 45.92, 4.0) (16, 120.1, 4.0)
nonlinearityβy 0.033 0.026 0.020 0.008
nonlinearityβz 0.400 0.307 0.271 0.260
x period (step) 15.2 12.4 11.2 10.4
z period (step) 15.2 11.3 9.2 5.4

where x,y, z are proportional to the intensity of convec-
tive motion, the temperature gradient in the horizontal and
vertical directions, respectively. A fourth-order Runge-
Kutta method was used to integrate the equations (from
t=−15 to 60 at time steps of 0.05) from initial conditions
(x, y, z) = (−9.42, −9.43, 28.3), with parametersa=10,
b=28, andc=8/3. Data fromt=0 to 60 were analyzed.

The degree of nonlinearity of the system can be character-
ized by 2 parameters:

βy=
〈|xz|〉

〈|bx|+|y|〉
, βz=

〈|xy|〉

〈|cz|〉
, (10)

where〈...〉 denotes the temporal mean,βy measures the size
of the nonlinear term relative to the size of the linear terms
in Eq. (8), and similarly,βz for Eq. (9).

We next perform four numerical experiments by vary-
ing the parameters (a,b, c): Case 1 uses the same pa-
rameters as in Lorenz (1963) (Table1); Case 2 multi-
plies the parameters of Case 1 by the uniform factor of
1.3; Case 3 uses the parameters from Basu and Foufoula-
Georgiou (2002); and Case 4, from Elsner and Tsonis (1992).
The nature of the oscillations varies among the four cases
(Fig. 5). For each case, 21 ensemble runs were made
by adding one percent stochastic noise onto the initial
data (i.e., the initial dataxto, yto, zto were changed to
(1+0.01α1)xto, (1+0.01α2)yto, (1+0.01α3)zto, where α1,
α2 andα3 were Gaussian random numbers with zero mean
and unit standard deviation).

Table1 listsβy andβz calculated from Eq. (10) for the four
cases. The main spectral periodsTx andTz determined from
the power spectra ofx andz, respectively (Fig.6) are also
listed in Table1. The spectral behavior ofy (not shown) is
basically the same as as that forx, butz shows sharper spec-
tral peaks thanx (Fig. 6). Proceeding inversely from Case 4
to Case 1, one finds a progressive increase inβy andβz, and
in Tx andTz, indicating that an increase in the nonlinearity of
the system coincides with an increase in the spectral period
of the oscillations.

Again (x,y, z) at timet were used as predictors in nonlin-
ear regression models to separately predict these three vari-
ables at timet+lead time (where the lead time ranged from 0
to 20 time steps). Fig.7 shows enhanced predictability (with
higher correlation coefficient and lower MSE) forz as one
proceeds inversely from Case 4 to Case 1, where the nonlin-
earity of the system increased. This behavior in predictability
was also found forx (not shown), though for a given level of
correlation skill,x tends to have longer lead times thanz.

Since relative tox, the predictability lead time forz tends
to be shorter, and its main spectral periodTz is also≤Tx and
more sensitive to changes in the Lorenz system parameters
(Table1), we now focus onz. Its predictability lead time (for
0.80 correlation skill) divided by the main spectral periodTz

is 0.69, 0.69, 0.70 and 0.65 for Cases 1 to 4, respectively, i.e.
in all 4 cases, the nonlinear regression model when predict-
ing ahead by 0.7 times the period inz can attain a correla-
tion skill of 0.8 for all four cases, thereby demonstrating that
the enhanced predictability was basically due to the length-
ened period of the oscillations when the nonlinearity of the
Lorenz system was enhanced from Case 4 to Case 1. For the
correlation skill of 0.95, its predictability lead time divided
by the main spectral periodTz is 0.51, 0.50, 0.50 and 0.46
for Cases 1 to 4, respectively. So a similar conclusion can be
drawn regardless of the correlation skill level chosen.

One potential problem with our calculation ofβy and
βz is that (0, 0, 0) has been used as the reference point,
whereas the Lorenz attractor has two other equilibrium
points (Drazin, 1992) which could also be chosen as the
reference point(x0, y0, z0). If we replace(x, y, z) by
(x0+x′, y0+y′, z0+z′) in Eqs. (7)–(9), then drop the primes
for brevity, we get the Lorenz system with respect to the ref-
erence point(x0, y0, z0):

dx/dt = −a(x+x0)+a(y+y0), (11)

dy/dt = −(x+x0)(z+z0)+b(x+x0)−(y+y0), (12)

dz/dt = (x+x0)(y+y0)−c(z+z0). (13)

Nonlin. Processes Geophys., 15, 793–801, 2008 www.nonlin-processes-geophys.net/15/793/2008/
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Fig. 5. Normalized time series ofx (top panel) andz (bottom panel) in the Lorenz model for(a) Case 1,(b) Case 2,(c) Case 3 and(d)
Case 4, where the time series for different cases are vertically shifted by multiples of 5 for legibility.

The ratios of nonlinear to linear terms in Eqs. (12) and (13)
are

βy=
〈|xz|〉

〈|z0x|+|x0z|+|bx|+|y|〉
, βz=

〈|xy|〉

〈|y0x|+|x0y|+|cz|〉
. (14)

When the reference point is the equilibrium point (
√

c(b−1),
√

c(b−1), b−1), the parameterβy is found to be 0.037,
0.027, 0.020, 0.008 for Cases 1 to 4, respectively; whileβz

is 0.320, 0.296, 0.260, 0.245 for Cases 1 to 4. Similar re-
sults are obtained if we choose the other equilibrium point

(−
√

c(b−1), −
√

c(b−1), b−1) as the reference. There-
fore bothβy andβz decrease as we proceed from Case 1 to
Case 4, regardless of whether the origin or one of the other
2 equilibrium points has been chosen as the reference point.

A caveat on the Lorenz system: The system is chaotic only
over a range of parameter values. Our numerical runs were
done over a range where the Lorenz system was chaotic.
If the parameters were increased or decreased by the right
amount, the Lorenz system could simply converge from the
initial state to a single point in the (x, y, z) space.
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Fig. 6. Ensemble mean power spectrum of the normalized(a) x and
(b) z components. Dash, solid, dash-dot and dotted lines represent
Case 1, 2, 3 and 4, respectively.

4 Summary and conclusion

Numerical coupled model results show that the predictability
of ENSO is closely related to its nonlinearity and period. Un-
der the post-1980s climatology, ENSOs have stronger non-
linearity and longer period. The longer period enhances the
system’s persistence, leading to better predictability. This
behavior was also found in the Lorenz chaotic system, sug-
gesting that it is not unusual for the increased nonlinearity of
a climate system to enhance its predictability.
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Fig. 7. Ensemble mean predictability in terms of correlation skill
(top) and MSE (bottom) ofz in the Lorenz system, as given by the
cross-validated correlation and MSE between the predicted and ac-
tual time series. Dash, solid, dash-dot and dotted lines represent
Case 1(a), 2 (b), 3 (c) and 4(d), respectively, with error bars show-
ing ±1 standard error.

In the ENSO coupled model, when the nonlinear terms in
the surface temperature equation are switched off, the SST
anomalies display no longer predominantly interannual vari-
ability at the 4–5 year period, but only variability mainly
around the annual period for both the pre- and post-1980
climatologies. Similarly, when the nonlinear terms in the
Lorenz system are discarded, the system does not oscillate at
all. Hence the nonlinear terms in both the ENSO and Lorenz
systems play a crucial role in influencing the period of the
oscillations hence the predictability.
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