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Abstract
13

The Arctic Oscillation (AO) under increased atmospheric concentration of greenhouse gases14

(GHG) was studied by comparing an ensemble of simulations from 13 coupled general circulation15

models with GHG at the pre-industrial level and at the late 20th century level, for November to16

March. The change in the linear AO pattern as GHG increased reveals positive sea level pressure17

(SLP) anomalies centered over the Gulf of Alaska, and weaker negative SLP anomalies over east-18

ern Canada and North Atlantic – a pattern resembling the nonlinear AO pattern arising from a19

quadratic relation to the AO index. This quadratic AO pattern itself has positive SLP anomalies20

receding from Europe but strengthening over the Gulf of Alaska and surrounding areas as GHG21

increased. This study points to the importance of the nonlinear structure in determining how the22

linear oscillatory pattern changes when there is a change in the mean climate.23
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1 Introduction24

The Arctic Oscillation (AO) is the leading mode of atmospheric variability over the extratropical25

Northern Hemisphere [Thompson and Wallace, 1998, 2001]. Through principal component analysis26

(PCA), the spatial AO pattern is commonly obtained from the first empirical orthogonal function27

(EOF) of the mean sea level pressure (SLP) anomaly field, while the associated principal component28

(PC) time series serves as an AO index.29

The AO index has gradually risen since the 1960s with historic highs in the early 1990s. It has been30

suggested that this positive trend in the AO index significantly contributed to the observed warming31

trend over Eurasia and North America, accounting for as much as 50% of the winter warming over32

Eurasia [Thompson et al., 2000]. It is also notable that the AO index has been decreasing in recent33

years; with these recent data included, Cohen and Barlow [2005] found that the overall trends for the34

past 30 years were weak to nonexistent.35

Most climate models under increasing greenhouse gases (GHG) forcing showed a positive trend36

in the AO index [Gillett et al., 2002]. Comparing the observed SLP trends with those simulated37

in response to natural and anthropogenic influence in a suite of coupled general circulation models38

(CGCM), Gillett et al . [2005] found that while the simulated Southern Hemisphere SLP trends were39

consistent with observations, the simulated Northern Hemisphere SLP trends were far too weak. Some40

authors [e.g., Scaife et al., 2005] suggested that a well-resolved stratosphere in the model could be41

important for simulating the AO trend.42

Besides trends in the AO index, the AO spatial anomaly pattern may also respond to changes in43

natural and anthropogenic forcing. Analyzing the data from an ensemble of 201-year simulations by44

the Canadian Centre for Climate Modelling and Analysis (CCCma) coupled climate model forced by45
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changing GHG concentrations and aerosol loading [Flato and Boer , 2001], Fyfe et al . [1999] found that46

the model simulated an essentially unchanged AO spatial pattern superimposed on a forced climate47

pattern. AO also has nonlinear structure. For example, composite analyses reveal that during positive48

and negative AO phases, the associated atmospheric anomaly patterns are not simply anti-symmetric49

to each other [Pozo-Vázquez et al ., 2001; Wu et al ., 2006]. Using nonlinear projection via a neural50

network (NN) approach to study nonlinear atmospheric teleconnections, Hsieh et al . [2006] found51

that, in addition to the classic (i.e. linear) AO spatial pattern, there is significant variability that is52

associated quadratically with the AO index.53

In this study, using data from 13 CGCMs, we found that despite the general similarity between54

the spatial AO pattern in the pre-industrial and in the current period, there are subtle changes which55

can be explained by nonlinear (mainly quadratic) AO behavior.56

2 Data and methodology57

2.1 Data58

We studied simulations produced with 13 CGCMs for the Intergovernmental Panel on Climate Change59

(IPCC) Fourth Assessment Report, namely CCCma-CGCM3.1, CNRM-CM3, CSIRO-Mk3.0, GFDL-60

CM2.0, GISS-ER, IAP-FGOALS-g1.0, INM-CM3.0, IPSL-CM4, MIROC3.2, MIUB-ECHO-G, MRI-61

CGCM2.3.2, NCAR-CCSM3.0 and UKMO-HadCM3. See62

http://www-pcmdi.llnl.gov/ipcc/model documentation/ipcc documentation.php for details. We used63

two simulations from each model, one from the integration with the GHG concentrations fixed at the64

pre-industrial (PI) level, and the other from the committed climate change experiments (CMT) where65

the GHG and aerosols were fixed at the level of the late 20th century. The various model runs ranged66
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in length from 100 to 500 years.67

The observed monthly SLP data from NCAR [Trenberth and Paolino, 1980] during January 195068

to December 2005 were also used, with SLP anomalies calculated by subtracting the monthly clima-69

tological means from 1950-2005. After weighting the anomalies by the square root of the cosine of the70

latitude, PCA was performed on the November to March monthly anomaly data over the N. Hemi-71

sphere from 20◦N to 90◦N, with the standardized first PC defined as the AO index. A longer record72

of monthly SLP data from 1850 to 2004, namely the Hadley Center SLP Version 2 (HadSLP2)[Allan73

and Ansell , 2006], was also used.74

For the model SLP data from each CGCM, the climatological monthly mean from the PI run was75

subtracted to give the anomalies both for the PI run and for the CMT run. For each CGCM, PCA was76

performed on the November to March monthly SLP anomalies in the PI run, with the standardized77

first PC taken to be the AO index. To keep a consistent definition of the AO index between the PI78

and CMT experiments for each CGCM, the CMT anomalies were projected to the first EOF from the79

PI experiment, then standardized (using the mean and standard deviation from the PI experiment)80

to obtain the AO index. The mean of the AO index in each of the 13 model CMT runs are 0.13, 0.08,81

0.05, 0.11, 0.07, -0.02, 0.10, 0.36, 0.03, 0.33, 0.07, 0.14 and -0.07, respectively. The average over the 1382

values is 0.11, compared to 0.16, the change in the mean AO index over the period 1950-2004 relative83

to that over the period 1850-1900 (from the HadSLP2 data). We acknowledge that it is only a rough84

comparison, as forcing is constant in the CMT runs (although the climate is not in equilibrium), while85

forcing is not constant in the real world especially during the latter half of the 20th century.86
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2.2 Quadratic polynomial fit87

In Hsieh et al . [2006], the nonlinear relation between the N. Hemisphere winter SLP anomalies and88

the AO index was found be basically quadratic. Hence we will fit a quadratic polynomial between the89

gridded SLP anomalies (y) and the AO index (x) (with no time lag between x and y),90

y = ax + bx2 + c, (1)91

where a gives the classic linear AO pattern, while b gives the quadratic response pattern.92

For each CGCM, a quadratic polynomial least squares fit was performed separately for the PI and93

CMT runs, and the linear and quadratic patterns were then ensemble averaged over the 13 CGCMs.94

For the shorter observational record, bootstrap resampling [Efron and Tibshirani 1993] was performed95

400 times, where each bootstrap sample was obtained by randomly selecting (with replacement) one96

winter’s data N times from the original record of N years. The linear and quadratic patterns were97

then ensemble averaged over the 400 quadratic polynomial fits.98

3 Results99

Figs. 1a and b show the ensemble mean of the linear AO pattern for the PI and CMT model runs,100

respectively, while Fig. 1c shows the corresponding results from observations for the period 1950-2005.101

The SLP anomaly patterns are visually quite similar to each other in Figs. 1a, b and c, except that in102

the model results the AO SLP anomalies are too strong over N. Pacific compared to the observations,103

where the AO is weaker over N. Pacific than over N. Atlantic and Europe.104

Figs. 1d, e and f show the ensemble averaged quadratic pattern for the PI, CMT and observational105

data, respectively. Being quadratically associated with the AO index, these anomalies are excited106

during both the positive and negative phase of the AO index. Positive SLP anomalies centered over107
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the Gulf of Alaska extended from the N. Pacific to N. America, then through Greenland to Europe,108

while negative anomalies occurred over the North Atlantic. The magnitudes of the anomalies in these109

quadratic patterns are much weaker than those in the linear patterns, nevertheless, there is considerable110

similarity among these three quadratic patterns. Although the quadratic anomalies from observations111

have larger magnitude than those from the models, this could merely be sampling variability as the112

observed record is quite short. A similar nonlinear pattern is obtained when using the HadSLP2 data113

(not shown).114

The quadratic pattern is also seen changing under increased GHG (cf. Figs. 1d and 1e): The115

positive anomalies receded from Europe but strengthened over the Gulf of Alaska and surrounding116

areas, suggesting that under enhanced GHG, the nonlinear AO behavior tends to occur farther from117

the Euro-Atlantic region.118

The change in the classic linear AO pattern under enhanced GHG (Fig. 2) is somewhat similar to119

the quadratic patterns in Figs. 1d, e and f, especially Fig. 1e, suggesting that the change in the classic120

AO pattern is related to the nonlinear property of AO itself, as will be investigated below.121

4 Discussion122

We now examine the quadratic fit (1) to see what happens when there is a shift in the mean of x123

under climate change. Let x = x + x′, and y = y + y′, where the overbar denotes the mean and the124

prime denotes the deviation. The mean of (1) gives125

y = ax + bx2 + c, (2)126

hence127

y′ = (a + 2xb)x′ + bx′2 + c′, (3)128
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where c′ = −bx′2. This implies that if the mean x is nonzero, the linear AO pattern given by a+2xb129

would have imbedded the quadratic pattern b. In the PI runs, x = 0, so the linear AO pattern is a;130

but in the CMT runs, if x = ∆, then the linear pattern becomes a + 2b∆. The difference between131

the linear patterns in CMT and in PI is thus 2b∆, hence the resemblance to the quadratic pattern,132

as was indeed found between Fig. 2 and Fig. 1d or e.133

Our results also imply ∆ to be positive, since if ∆ were negative, Fig. 2 would have displayed134

opposite signed anomalies from Fig. 1e. The AO index has indeed been found to gradually rise in135

observations [Wallace and Thompson, 2002] and in climate models under increasing GHG forcing136

[Gillett et al ., 2002, 2003]. The change in the linear pattern in Fig. 2 is manifested most strongly in137

the Gulf of Alaska, where it reaches about 0.4 hPa, whereas the quadratic pattern reaches about 0.4138

hPa in the same area in Fig. 1e. To account for the change in the linear pattern by 2b∆ requires139

∆ ≈ 0.5. A similar estimate in the Atlantic yields ∆ ≈ 0.3, hence an average ∆ of about 0.4 is needed.140

However, in the CMT runs, ∆ averaged only 0.11, a little less than 30% of the needed value.141

There are two possibilities for the discrepancy: (a) The weak ∆ results from the fact that the142

CGCMs simulate SLP trends that are too weak in the N. Hemisphere [Gillett et al . 2005], and (b) our143

assumption that Eq. (1) is unchanged as GHG increased is not strictly correct. For instance, in the144

least squares fit, a is solved for in terms of variances and covariances involving y′, x′ and x′2, which145

have been assumed to be unchanged from PI to CMT.146

5 Summary and conclusions147

Data from multiple CGCM simulations with GHG concentrations at the PI level and at the late148

20th century level (CMT) were used to reveal how AO changes under global warming. By fitting149
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a quadratic polynomial between the SLP anomalies and the AO index, we obtained the oscillatory150

patterns in the SLP that are linearly and quadratically related to the AO index. The linear pattern151

is the classic AO pattern, while the quadratic pattern shows positive SLP anomalies centered over152

the Gulf of Alaska stretching from northeast Pacific-N. America through Greenland to Europe, and153

weaker negative SLP anomalies over North Atlantic, in general agreement with the quadratic pattern154

extracted from observed data.155

The change of the linear AO pattern under increased GHG (from PI to CMT) showed a SLP156

anomaly pattern which resembled the quadratic pattern. A small change in the mean of the AO157

index under increased GHG would modify the linear AO pattern due to the presence of the quadratic158

pattern. That the underlying nonlinear structure can alter the classic linear oscillations under changes159

in the mean background state is a new concept which may also apply to the other oscillations in our160

climate system.161

The quadratic pattern of AO also exhibits changes from increased GHG, with the positive SLP162

anomalies receding from Europe while strengthening over the Gulf of Alaska and surrounding areas.163
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Figure captions210

Figure 1: Ensemble averaged linear pattern (top row) and quadratic pattern (bottom row) of the SLP211

anomalies associated with the AO index. The left column shows the ensemble mean from 13 CGCM212

integrations forced with PI GHG concentrations, the middle column, from the same models but with213

the late 20th century (CMT) conditions, and the right column, the observed data (1950-2005). The214

shaded areas indicate statistical significance at the 5% level based on the t-test (in panels a, b, d and215

e), and based on the bootstrap distribution (in panels c and f). The contour interval is 1 hPa for the216

linear patterns, and 0.1 hPa for the quadratic patterns.217

Figure 2: Changes in the linear AO pattern under increased GHG, i.e. Fig. 1b minus Fig. 1a. The218

contour interval is 0.05 hPa, with shaded areas significant at the 5% level from the t-test.219
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Figure 1: Ensemble averaged linear pattern (top row) and quadratic pattern (bottom row) of the SLP
anomalies associated with the AO index. The left column shows the ensemble mean from 13 CGCM
integrations forced with PI GHG concentrations, the middle column, from the same models but with
the late 20th century (CMT) conditions, and the right column, the observed data (1950-2005). The
shaded areas indicate statistical significance at the 5% level based on the t-test (in panels a, b, d and
e), and based on the bootstrap distribution (in panels c and f). The contour interval is 1 hPa for the
linear patterns, and 0.1 hPa for the quadratic patterns.
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Figure 2: Changes in the linear AO pattern under increased GHG, i.e. Fig. 1b minus Fig. 1a. The
contour interval is 0.1 hPa, with shaded areas significant at the 5% level from the t-test.
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