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Abstract

Methods in multivariate statistical analysis are essential for working with large amounts of geo-
physical data— data from observational arrays, from satellites or from numerical model output.
In classical multivariate statistical analysis, there is a hierarchy of methods, starting with lin-
ear regression (LR) at the base, followed by principal component analysis (PCA), and finally
canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum
analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of
these classical methods is that only linear structures can be correctly extracted from the data.

Since the late 1980s, neural network methods have become popular for performing nonlinear
regression (NLR) and classification. More recently, neural network methods have been extended
to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA) and nonlinear SSA (NLSSA).
This paper presents a unified view of the NLPCA, NLCCA and NLSSA techniques, and their
applications to various datasets of the atmosphere and the ocean (especially for the El Niño-
Southern Oscillation and the stratospheric Quasi-Biennial Oscillation). These datasets reveal
that the linear methods are often too simplistic to describe real-world systems — with a tendency
to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics,
which can be largely alleviated in the new nonlinear paradigm.
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1 Introduction

In a standard text on classical multivariate statistical analysis [e.g. Mardia et al., 1979], the chap-
ters typically proceed from linear regression, to principal component analysis, then to canonical
correlation analysis. In regression, one tries to find how the response variable y is linearly affected
by the predictor variables x ≡ [x1, . . . , xl], i.e.

y = r · x + ro + ε (1)

where ε is the error (or residual), and the regression coefficients r and ro are found by minimizing
the mean of ε2.

1.1 Principal component analysis

However, in many datasets, one cannot separate variables into predictor and response variables.
For instance, one may have a dataset of the monthly sea surface temperatures (SST) collected at
1000 grid locations over several decades, i.e. the dataset is of the form x(t) = [x1, . . . , xl], where
each variable xi (i = 1, . . . , l) has N samples labelled by the index t. Very often, t is simply the
time, and each xi is a time series containing N observations. Principal component anlaysis (PCA),
also known as empirical orthogonal function (EOF) analysis, looks for u, a linear combination of
the xi, and an associated vector a, with

u(t) = a · x(t) , (2)

so that
〈‖x(t) − au(t)‖2〉 is minimized, (3)

where 〈· · ·〉 denotes a sample or time mean. Here u, called the first principal component (PC)
(or score), is often a time series, while a, called the first eigenvector (also called an empirical
orthogonal function, EOF, or loading), is the first eigenvector of the data covariance matrix, and
a often describes a spatially standing oscillation pattern. Together u and a make up the first PCA
mode. In essence, a given dataset is approximated by a straight line (oriented in the direction of
a), which accounts for the maximum amount of variance in the data— pictorially, in a scatterplot
of the data, the straight line found by PCA passes through the ‘middle’ of the dataset. From
the residual, x − au, the second PCA mode can similarly be extracted, and so on for the higher
modes. In practice, the common algorithms for PCA extract all modes simultaneously [Jolliffe,
2002; Preisendorfer , 1988]. By retaining only the leading modes, PCA has been commonly used
to reduce the dimensionality of the dataset, and to extract the main patterns from the dataset.
PCA has also been extended to the singular spectrum analysis (SSA) technique for time series
analysis [Elsner and Tsonis, 1996; von Storch and Zwiers, 1999; Ghil et al., 2002].

1.2 Canonical correlation analysis

Next consider two data sets {xi(t)} and {yj(t)}, each with N samples. We group the {xi(t)} vari-
ables to form the vector x(t), and {yj(t)} to y(t). Canonical correlation analysis (CCA) [Mardia
et al., 1979; Bretherton et al., 1992; von Storch and Zwiers, 1999] looks for linear combinations

u(t) = a · x(t) , and v(t) = b · y(t) , (4)

where the canonical variates u and v have maximum correlation, i.e. the weight vectors a and b
are chosen such that cor(u, v), the Pearson correlation coefficient between u and v, is maximized.
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Figure 1: A schematic diagram of the feed-forward neural network (NN) model, with one ‘hidden’
layer of neurons (i.e. variables) (denoted by circles) sandwiched between the input layer and the
output layer. In the feed-forward NN model, the information only flows forward starting from
the input neurons. Increasing the number of hidden neurons increases the number of model
parameters. Adapted from Hsieh and Tang [1998].

For instance, if x(t) is the sea level pressure (SLP) field and y(t) is the SST field, then CCA can
be used to extract the correlated spatial patterns a and b in the SLP and SST fields. Unlike
regression, which tries to study how each yj is related to the x variables, CCA examines how the
entire y field is related to the x field. This wholistic view has made CCA popular [Barnett and
Preisendorfer , 1987; Barnston and Ropelewski , 1992; Shabbar and Barnston, 1996].

In the environmental sciences, researchers have to work with large datasets, from satellite
images of the earth’s surface, global climate data, to voluminous output from large numerical
models. Multivariate techniques such as PCA and CCA have become indispensible in extracting
essential information from these massive datasets [von Storch and Zwiers, 1999]. However, the
restriction to finding only linear relations means that nonlinear relations are either missed or
misinterpretted by these methods. The introduction of nonlinear multivariate and time series
techniques is crucial to further advancement in the environmental sciences.

1.3 Feed-forward neural network models

The nonlinear neural network (NN) models originated from research trying to understand how the
brain functions with its networks of interconnected neurons [McCulloch and Pitts, 1943]. There
are many types of NN models— some are only of interests to neurological researchers, while
others are general nonlinear data techniques. There are now many good textbooks on NN models
[Bishop, 1995; Rojas, 1996; Ripley , 1996; Cherkassky and Mulier , 1998; Haykin, 1999].

The most widely used NN models are the feed-forward NNs, also called multi-layer percep-
trons [Rumelhart et al. 1986], which perform nonlinear regression and classification. The basic
architecture (Fig. 1) consists of a layer of input neurons xi (a ‘neuron’ is simply a variable in
NN jargon) linked to a layer or more of ‘hidden’ neurons, which are in turn linked to a layer of
output neurons yj . In Fig. 1, there is only one layer of hidden neurons hk. A transfer function
(an ‘activation’ function in NN jargon) maps from the inputs to the hidden neurons. There is a
variety of choices for the transfer function, the hyperbolic tangent function being a common one,
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i.e.

hk = tanh

(∑
i

wkixi + bk

)
(5)

where wki and bk are the weight and bias parameters, respectively. The tanh(z) function is a
sigmoidal-shaped function, where its two asymptotic values of ±1 as z → ±∞ can be viewed as
representing the two states of a neuron (at rest or activated), depending on the strength of the
excitation z. (If there is more than one hidden layer, then equations of the same form as (5)
are used to calculate the values of the next layer of the hidden neurons from the current layer of
neurons). When the feed-forward NN is used for nonlinear regression, the output neurons yj are
usually calculated by a linear combination of the neurons in the preceding layer, i.e.

yj =
∑
k

w̃jkhk + b̃j . (6)

Given observed data yoj , the optimal values for the weight and bias parameters (wki, w̃jk, bk

and b̃j) are found by ‘training’ the NN, i.e. perform a nonlinear optimization, where the cost
function or objective function

J = 〈
∑
j

(yj − yoj)2〉 , (7)

is minimized, with J simply the mean squared error (MSE) of the output. The NN has found
a set of nonlinear regression relations yj = fj(x). To approximate a set of continuous functions
fj , only one layer of hidden neurons is enough, provided enough hidden neurons are used in that
layer [Hornik et al., 1989; Cybenko, 1989]. The NN with one hidden layer is commonly called
a 2-layer NN, as there are 2 layers of mapping [Eqs. (5) and (6)] going from input to output—
however, there are other conventions for counting the number of layers, and some authors refer
to our 2-layer NN as a 3-layer NN, since there are 3 layers of neurons.

1.4 Local minima and overfitting

The main difficulty of the NN method is that the nonlinear optimization often encounters multiple
local minima in the cost function. This means that starting from different initial guesses for the
parameters, the optimization algorithm may converge to different local minima. Many approaches
have been proposed to alleviate this problem [Bishop, 1995; Hsieh and Tang , 1998]— a common
approach involves multiple optimization runs starting from different random initial parameters,
so that, hopefully, not all runs will be stranded at shallow local minima.

Another pitfall with the NN method is overfitting, i.e. fitting to the noise in the data, due to
the tremendous flexibility of the NN to fit the data. With enough hidden neurons, the NN can
fit the data, including the noise, to arbitray accuracy. Thus for a network with many parameters,
reaching the global minimum may mean nothing more than finding a badly overfitted solution.
Usually, only a portion of the data record is used to train (i.e. fit) the NN model, the other
is reserved to validate the model. If too many hidden neurons are used, then the NN model
fit to the training data will be excellent, but the model fit to the validation data will be poor,
thereby allowing the researchers to gauge the appropriate number of hidden neurons. During the
optimization process, it is also common to monitor the MSE over the training data and over the
validation data separately. As the number of iterations of the optimization algorithm increased,
the MSE calculated over the training data would decrease; however, beyond a certain number
of iterations, the MSE over the validation data would begin to increase, indicating the start of
overfitting and hence the appropriate time to stop the optimization process. Another approach
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to avoid overfitting is to add weight penalty terms to the cost function, as discussed in Appendix
A. Yet another approach is to compute an ensemble of NN models starting from different random
initial parameters. The mean of the ensemble of NN solutions tends to give a smoother solution
than the individual NN solutions.

If forecast skills are to be estimated, then another unused part of the data record will have to
be reserved as independent test data for estimating the forecast skills, as the validation data have
already been used to determine the model architecture. Some authors interchange the terminology
for ‘validation’ data and ‘test’ data; the terminology here follows Bishop [1995]. For poor quality
datasets (e.g. short, noisy data records), the problems of local minima and overfitting could render
nonlinear NN methods incapable of offering any advantage over linear methods.

The feed-forward NN has been applied to a variety of nonlinear regression and classification
problems in environmental sciences such as meteorology and oceanography, and has been reviewed
by Gardner and Dorling [1998] and Hsieh and Tang [1998]. Some examples of recent applications
include: using NN for tornado diagnosis [Marzban, 2000 ], for efficient radiative transfer com-
putation in atmospheric general circulation models [Chevallier et al., 2000], for multi-parameter
satellite retrievals from the Special Sensor Microwave/Imager (SSM/I) [Gemmill and Krasnopol-
sky , 1999], for wind retrieval from scatterometer [Richaume et al., 2000], for adaptive nonlinear
model output statistics (MOS) [Yuval and Hsieh, 2003], for efficient computation of sea water
density or salinity from a nonlinear equation of state [Krasnopolsky et al., 2000], for tropical Pa-
cific sea surface temperature prediction [Tang et al., 2000 ; Yuval , 2001], and for an empirical
atmosphere in a hybrid coupled atmosphere-ocean model of the tropical Pacific [Tang and Hsieh,
2002]. For NN applications in geophysics (seismic exploration, well-log lithology determination,
electromagnetic exploration and earthquake seismology), see Sandham and Leggett [2003].

To keep within the scope of a review paper, I have to omit reviewing the numerous fine
papers on using NN for nonlinear regression and classification, and focus on the topic of how
the feed-forward NN can be extended from its original role as nonlinear regression, to nonlinear
PCA (Sec.2), nonlinear CCA (Sec.3) and nonlinear SSA (Sec.4), illustrated by examples from the
tropical Pacific atmosphere-ocean interactions and the equatorial stratospheric wind variations.
These examples reveal various disadvantages of the linear methods— the most common one being
the tendency to scatter a single oscillatory phenomenon into numerous modes or higher harmonics.

2 Nonlinear principal component analysis (NLPCA)

2.1 Open curves

As PCA finds a straight line which passes through the ‘middle’ of the data cluster, the obvious
next step is to generalize the straight line to a curve. Kramer [1991] proposed a neural-network
based nonlinear PCA (NLPCA) model where the straight line is replaced by a continuous open
curve for approximating the data.

The fundamental difference between NLPCA and PCA is that PCA only allows a linear
mapping (2) between x and the PC u, while NLPCA allows a nonlinear mapping. To perform
NLPCA, the feed-forward NN in Fig. 2a contains 3 hidden layers of neurons between the input
and output layers of variables.

The NLPCA is basically a standard feed-forward NN with 4-layers of transfer functions map-
ping from the inputs to the outputs. One can view the NLPCA network as composed of two
standard 2-layer feed-forward NNs placed one after the other. The first 2-layer network maps
from the inputs x through a hidden layer to the bottleneck layer with only one neuron u, i.e. a
nonlinear mapping u = f(x). The next 2-layer feedforward NN inversely maps from the nonlinear
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Figure 2: (a) A schematic diagram of the NN model for calculating the NLPCA. There are 3
layers of hidden neurons sandwiched between the input layer x on the left and the output layer
x′ on the right. Next to the input layer is the encoding layer, followed by the ‘bottleneck’ layer
(with a single neuron u), which is then followed by the decoding layer. A nonlinear function
maps from the higher dimension input space to the 1-dimension bottleneck space, followed by an
inverse transform mapping from the bottleneck space back to the original space represented by
the outputs, which are to be as close to the inputs as possible by minimizing the cost function
J = 〈‖x − x′‖2〉. Data compression is achieved by the bottleneck, with the bottleneck neuron
giving u, the nonlinear principal component (NLPC). (b) A schematic diagram of the NN model
for calculating the NLPCA with a circular node at the bottleneck (NLPCA(cir)). Instead of
having one bottleneck neuron u, there are now two neurons p and q constrained to lie on a unit
circle in the p-q plane, so there is only one free angular variable θ, the NLPC. This network is
suited for extracting a closed curve solution. Reprinted from Hsieh [2001a], with permission from
Tellus.
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PC (NLPC) u back to the original higher dimensional x-space, with the objective that the outputs
x′ = g(u) be as close as possible to the inputs x, (thus the NN is said to be auto-associative).
Note g(u) nonlinearly generates a curve in the x-space, hence a 1-dimensional approximation of
the original data. To minimize the MSE of this approximation, the cost function J = 〈‖x−x′‖2〉
is minimized to solve for the weight and bias parameters of the NN. Squeezing the input infor-
mation through a bottleneck layer with only one neuron accomplishes the dimensional reduction.
Details of the NLPCA are given in Appendix A.

In effect, the linear relation (2) in PCA is now generalized to u = f(x), where f can be any
nonlinear continuous function representable by a feed-forward NN mapping from the input layer
to the bottleneck layer; and instead of (3), 〈‖x − g(u)‖2〉 is minimized. The residual, x − g(u),
can be input into the same network to extract the second NLPCA mode, and so on for the higher
modes.

That the classical PCA is indeed a linear version of this NLPCA can be readily seen by
replacing all the transfer functions with the identity function, thereby removing the nonlinear
modelling capability of the NLPCA. Then the forward map to u involves only a linear combination
of the original variables as in the PCA.

The NLPCA has been applied to the radiometric inversion of atmospheric profiles [Del Frate
and Schiavon, 1999] and to the Lorenz [1963] 3-component chaotic system [Monahan, 2000; Hsieh,
2001a]. For the tropical Pacific climate variability, the NLPCA has been used to study the SST
field [Monahan, 2001; Hsieh, 2001a] and the SLP field [Monahan, 2001]. The Northern Hemi-
sphere atmospheric variability [Monahan et al . 2000, 2001], the Canadian surface air temperature
[Wu et al . 2002], and the subsurface thermal structure of the Pacific Ocean [Tang and Hsieh,
2003] have also been investigated by the NLPCA.

In the classical linear approach, there is a well-known dichotomy between PCA and rotated
PCA (RPCA) [Richman, 1986]. In PCA, the linear mode which accounts for the most variance
of the dataset is sought. However, as illustrated in Preisendorfer [1988, Fig.7.3], the resulting
eigenvectors may not align close to local data clusters, so the eigenvectors may not represent
actual physical states well. One application of RPCA methods is to rotate the PCA eigenvectors,
so they point closer to the local clusters of data points [Preisendorfer , 1988]. Thus the rotated
eigenvectors may bear greater resemblance to actual physical states (though they account for less
variance) than the unrotated eigenvectors, hence RPCA is also widely used [Richman, 1986; von
Storch and Zwiers, 1999]. As there are many possible criteria for rotation, there are many RPCA
schemes, among which the varimax [Kaiser , 1958] scheme is perhaps the most popular.

The tropical Pacific climate system contains the famous interannual variability known as the El
Niño-Southern Oscillation (ENSO), a coupled atmosphere-ocean interaction involving the oceanic
phenomenon El Niño and the associated atmospheric phenomenon, the Southern Oscillation. The
coupled interaction results in anomalously warm SST in the eastern equatorial Pacific during El
Niño episodes, and cool SST in the central equatorial Pacific during La Niña episodes [Philander ,
1990; Diaz and Markgraf , 2000]. ENSO is an irregular oscillation, but spectral analysis does reveal
a broad spectral peak at the 4-5 year period. Hsieh [2001a] used the tropical Pacific SST data
(1950-1999) to make a 3-way comparison between NLPCA, RPCA and PCA. The tropical Pacific
SST anomaly (SSTA) data (i.e. the SST data with the climatological seasonal cycle removed) were
pre-filtered by PCA, with only the 3 leading modes retained. PCA modes 1, 2 and 3 accounted
for 51.4%, 10.1% and 7.2%, respectively, of the variance in the SSTA data. The first 3 PCs (PC1,
PC2 and PC3) were used as the input x for the NLPCA network.

The data are shown as dots in a scatter plot in the PC1-PC2 plane (Fig. 3), where the cool
La Niña states lie in the upper left corner, and the warm El Niño states in the upper right corner.
The NLPCA solution is a U-shaped curve linking the La Niña states at one end (low u) to the
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Figure 3: Scatter plot of the SST anomaly (SSTA) data (shown as dots) in the PC1-PC2 plane,
with the El Niño states lying in the upper right corner, and the La Niña states in the upper
left corner. The PC2 axis is stretched relative to the PC1 axis for better visualization. The
first mode NLPCA approximation to the data is shown by the (overlapping) small circles, which
traced out a U-shaped curve. The first PCA eigenvector is oriented along the horizontal line, and
the second PCA, by the vertical line. The varimax method rotates the two PCA eigenvectors
in a counterclockwise direction, as the rotated PCA (RPCA) eigenvectors are oriented along the
dashed lines. (As the varimax method generates an orthogonal rotation, the angle between the
two RPCA eigenvectors is 90◦ in the 3-dimensional PC1-PC2-PC3 space). Reprinted from Hsieh
[2001a], with permission from Tellus.
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El Niño states at the other end (high u), similar to that found originally by Monahan [2001].
In contrast, the first PCA eigenvector lies along the horizontal line, and the second PCA, along
the vertical line (Fig. 3), neither of which would come close to the El Niño states in the upper
right corner nor the La Niña states in the upper left corner, thus demonstrating the inadequacy
of PCA. For comparison, a varimax rotation [Kaiser , 1958; Preisendorfer , 1988], was applied to
the first 3 PCA eigenvectors. (The varimax criterion can be applied to either the loadings or the
PCs depending on one’s objectives [Richman, 1986; Preisendorfer , 1988]; here it is applied to the
PCs.) The resulting first RPCA eigenvector, shown as a dashed line in Fig. 3, spears through the
cluster of El Niño states in the upper right corner, thereby yielding a more accurate description of
the El Niño anomalies (Fig. 4c) than the first PCA mode (Fig. 4a), which did not fully represent
the intense warming of Peruvian waters. The second RPCA eigenvector, also shown as a dashed
line in Fig. 3, did not improve much on the second PCA mode, with the PCA spatial pattern
shown in Fig. 4b, and the RPCA pattern in Fig. 4d). In terms of variance explained, the first
NLPCA mode explained 56.6% of the variance, versus 51.4% by the first PCA mode, and 47.2%
by the first RPCA mode.

With the NLPCA, for a given value of the NLPC u, one can map from u to the 3 PCs. This
is done by assigning the value u to the bottleneck neuron and mapping forward using the second
half of the network in Fig. 2a. Each of the 3 PCs can be multiplied by its associated PCA (spatial)
eigenvector, and the three added together to yield the spatial pattern for that particular value of
u. Unlike PCA which gives the same spatial anomaly pattern except for changes in the amplitude
as the PC varies, the NLPCA spatial pattern generally varies continuously as the NLPC changes.
Figs. 4e and f show respectively the spatial anomaly patterns when u has its maximum value
(corresponding to the strongest El Niño) and when u has its minimum value (strongest La Niña).
Clearly the asymmetry between El Niño and La Niña, i.e. the cool anomalies during La Niña
episodes (Fig. 4f) are observed to center much further west of the warm anomalies during El Niño
(Fig. 4e) [Hoerling et al ., 1997] is well captured by the first NLPCA mode— in contrast, the PCA
mode 1 gives a La Niña which is simply the mirror image of the El Niño (Fig. 4a). While El Niño
has been known by Peruvian fishermen for many centuries due to its strong SSTA off the coast
of Peru and its devastation of the Peruvian fishery, the La Niña, with its weak manifestation in
the Peruvian waters, was not appreciated until the last two decades of the 20th century.

In summary, PCA is used for two main purposes: (i) to reduce the dimensionality of the
dataset, and (ii) to extract features or recognize patterns from the dataset. It is purpose (ii)
where PCA can be improved upon. Both RPCA and NLPCA take the PCs from PCA as input.
However, instead of multiplying the PCs by a fixed orthonormal rotational matrix, as performed
in the varimax RPCA approach, NLPCA performs a nonlinear mapping of the PCs. RPCA
sacrifices on the amount of variance explained, but by rotating the PCA eigenvectors, RPCA
eigenvectors tend to point more towards local data clusters and are therefore more representative
of physical states than the PCA eigenvectors.

With a linear approach, it is generally impossible to have a solution simultaneously (a) ex-
plaining maximum global variance of the dataset and (b) approaching local data clusters, hence
the dichotomy between PCA and RPCA, with PCA aiming for (a) and RPCA for (b). Hsieh
[2001a] pointed out that with the more flexible NLPCA method, both objectives (a) and (b) may
be attained together, thus the nonlinearity in NLPCA unifies the PCA and RPCA approaches. It
is easy to see why the dichotomy between PCA and RPCA in the linear approach automatically
vanishes in the nonlinear approach. By increasing m, the number of hidden neurons in the encod-
ing layer (and the decoding layer), the solution is capable of going through all local data clusters
while maximizing the global variance explained. (In fact, for large enough m, NLPCA can pass
through all data points, though this will in general give an undesirable, overfitted solution.)
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Figure 4: The SSTA patterns (in ◦C) of the PCA, RPCA and the NLPCA. The first and second
PCA spatial modes are shown in (a) and (b) respectively, (both with their corresponding PCs
at maximum value). The first and second varimax RPCA spatial modes are shown in (c) and
(d) respectively, (both with their corresponding RPCs at maximum value). The anomaly pattern
as the NLPC u of the first NLPCA mode varies from (e) maximum (strong El Niño) to (f) its
minimum (strong La Niña). With a contour interval of 0.5◦C , the positive contours are shown
as solid curves, negative contours, dashed curves, and the zero contour, a thick curve. Adapted
from Hsieh [2001a]
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The tropical Pacific SST example illustrates that with a complicated oscillation like the El
Niño-La Niña phenomenon, using a linear method such as PCA results in the nonlinear mode
being scattered into several linear modes (in fact, all 3 leading PCA modes are related to this
phenomenon). This brings to mind the famous parable of the three blind men and their disparate
descriptions of an elephant— hence the importance of the NLPCA as a unifier of the separate
linear modes. In the study of climate variability, the wide use of PCA methods has created the
somewhat misleading view that our climate is dominated by a number of spatially fixed oscillatory
patterns, which is in fact due to the limitation of the linear method. Applying NLPCA to the
tropical Pacific SSTA, we found no spatially fixed oscillatory patterns, but an oscillation evolving
in space as well as in time.

2.2 Closed curves

The NLPCA is capable of finding a continuous open curve solution, but there are many geophysical
phenomena involving waves or quasi-periodic fluctuations, which call for a continuous closed curve
solution. Kirby and Miranda [1996] introduced a NLPCA with a circular node at the network
bottleneck [henceforth referred to as the NLPCA(cir)], so that the nonlinear principal component
(NLPC) as represented by the circular node is an angular variable θ, and the NLPCA(cir) is
capable of approximating the data by a closed continuous curve. Fig. 2b shows the NLPCA(cir)
network, which is almost identical to the NLPCA of Fig. 2a, except at the bottleneck, where there
are now two neurons p and q constrained to lie on a unit circle in the p-q plane, so there is only
one free angular variable θ, the NLPC. Details of the NLPCA(cir) are given in Appendix B.

Applications of the NLPCA(cir) have been made to the tropical Pacific SST [Hsieh, 2001a],
and to the equatorial stratospheric zonal wind (i.e. the east-west component of the wind) for
the quasi-biennial oscillation (QBO) [Hamilton and Hsieh, 2002]. The QBO dominates over the
annual cycle or other variations in the equatorial stratosphere, with the period of oscillation
varying roughly between 22 and 32 months, with a mean of about 28 months. After the 45-
year means were removed, the zonal wind u at 7 vertical levels in the stratosphere became the
7 inputs to the NLPCA(cir) network. The NLPCA(cir) mode 1 solution gives a closed curve
in a 7-dimensional space. The system goes around the closed curve once, as the NLPC θ varies
through one cycle of the QBO. Fig. 5 shows the solution in 3 of the 7 dimensions, namely the wind
anomalies at the 70, 30 and 10 hPa pressure levels (corresponding to elevations ranging roughly
between 20-30 km above sea level). The NLPCA(cir) mode 1 explains 94.8% of the variance.
For comparison, the linear PCA yields 7 modes explaining 57.8, 35.4, 3.1, 2.1, 0.8, 0.5 and 0.3%
of the variance, respectively. To compare with the NLPCA(cir) mode 1, Hamilton and Hsieh
[2002] constructed a linear model of θ. In the plane spanned by PC1 and PC2 (each normalized
by its standard deviation), an angle θ can be defined as the arctangent of the ratio of the two
normalized PCA coefficients. This linear model accounts for 83.0% of the variance in the zonal
wind, considerably less than the 94.8% accounted for by the NLPCA(cir) mode 1. The QBO as θ
varies over one cycle is shown in Fig. 6 for the NLPCA(cir) mode 1 and for the linear model. The
observed strong asymmetries between the easterly and westerly phases of the QBO [Hamilton,
1998; Baldwin et al ., 2001] are captured by the nonlinear mode but not by the linear mode.

The actual time series of the wind measured at a particular height level is somewhat noisy
and it is often desirable to have a smoother representation of the QBO time series which captures
the essential features at all vertical levels. Also, the reversal of the wind from westerly to easterly
and vice versa occurs at different times for different height levels, rendering it difficult to define
the phase of the QBO. Hamilton and Hsieh [2002] found that the phase of the QBO as defined
by the NLPC θ is more accurate than previous attempts to characterize the phase, leading to
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Figure 5: The NLPCA(cir) mode 1 solution for the equatorial stratospheric zonal wind is shown
by the (overlapping) circles, while the data are shown as dots. For comparison, the PCA mode 1
solution is shown as a thin straight line. Only 3 out of 7 dimensions are shown, namely u at the
top, middle and bottom levels (10, 30 and 70 hPa). Panels (a)-(c) give 2-D views, while (d) gives
a 3-D view. From Hamilton and Hsieh [2002].
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Figure 6: (a) Contour plot of the NLPCA(cir) mode 1 zonal wind anomalies as a function of
pressure and θweighted, where θweighted is θ weighted by the histogram distribution of θ. Thus
θweighted is more representative of actual time during a cycle than θ. Contour interval is 5 ms−1,
with westerly winds indicated by solid lines, easterlies by dashed lines, and zero contours by thick
lines. (b) Similar plot for a linear circular model of θweighted. From Hamilton and Hsieh [2002].
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a stronger link between the QBO and northern hemisphere polar stratospheric temperatures in
winter (the Holton-Tan effect) [Holton and Tan, 1980] than previously found.

2.3 Other approaches (principal curves, self-organizing maps)

Besides the auto-associative NN, there have been several other approaches developed to generalize
PCA [Cherkassy and Mulier, 1998 ]. The principal curve method [Hastie and Stuetzle, 1989;
Hastie et al . 2001] finds a nonlinear curve which passes through the middle of the data points.
Developed originally in the statistics community, this method does not appear to have been
applied to the environmental sciences or geophysics. There is a subtle but important difference
between NLPCA (by auto-associative NN) and principal curves. In the principal curve approach,
each point in the data space is projected to a point on the principal curve, where the distance
between the two is the shortest. In the NLPCA approach, while the mean squared error (hence
distance) between the data point and the projected point is minimized, it is only the mean
which is minimized. There is no guarantee for an individual data point that it will be mapped
to the closest point on the curve found by NLPCA. Hence, unlike the projection in principal
curves, the projection used in NLPCA is suboptimal [Malthouse, 1998]. However, NLPCA has
an advantage over the principal curve method in that its NN architecture provides a continuous
(and differentiable) mapping function.

Newbigging et al . [2003] used the principal curve projection concept to improve the NLPCA
solution. Malthouse [1998] made a comparison between principal curves and the NLPCA model
by auto-associative NN. Unfortunately, when testing a closed curve solution, he used NLPCA
instead of NLPCA(cir) (which would have extracted the closed curve easily), thereby ending up
with the conclusion that the NLPCA was not satisfactory for extracting the closed curve solution.

Another popular NN method is the self-organizing map (SOM) [Kohonen, 1982; Kohonen et
al., 2001], used widely for clustering. Since this approach fits a grid (usually a 1-D or 2-D grid)
to a dataset, it can be thought of as a discrete version of nonlinear PCA [Cherkassy and Mulier ,
1998]. SOM has been applied to the clustering of winter daily precipitation data [Cavazos, 1999],
to satellite ocean colour classification [Yacoub et al., 2001], and to high-dimensional hyperspectral
AVIRIS (Airbourn Visible-Near Infrared Imaging Spectrometer) data to classify the geology of
the land surface [Villmann et al ., 2003]. For seismic data, SOM has been used to identify and
classify multiple events [Essenreiter et al., 2001], and in well log calibration [Taner et al., 2001].

Another way to generalize PCA is via independent component analysis (ICA) [Comon, 1994;
Hyvärinen et al., 2001], which was developed from information theory, and has been applied to
study the tropical Pacific SST variability by Aires et al. [2000]. Since ICA uses higher order
statistics (e.g. kurtosis, which is very sensitive to outliers), it may not be robust enough for the
noisy datasets commonly encountered in climate or seismic studies [T. Ulrych, 2003, personal
communication].

3 Nonlinear canonical correlation analysis (NLCCA)

While many techniques have been developed for nonlinearly generalizing PCA, there has been
much less activity in developing nonlinear CCA. A number of different approaches have recently
been proposed to nonlinearly generalize CCA [Lai and Fyfe, 1999, 2000; Hsieh, 2000; Melzer et
al., 2003]. Hsieh [2000] proposed using three feed-forward NNs to accomplish NLCCA, where the
the linear mappings in (4) for the CCA are replaced by nonlinear mapping functions using 2-layer
feed-forward NNs. The mappings from x to u and y to v are represented by the double-barreled
NN on the left hand side of Fig. 7.
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Figure 7: The three feed-forward NNs used to perform NLCCA. The double-barreled NN on the
left maps from the inputs x and y to the canonical variates u and v. The cost function J forces the
correlation between u and v to be maximized. On the right side, the top NN maps from u to the
output layer x′. The cost function J1 basically minimizes the MSE of x′ relative to x. The third
NN maps from v to the output layer y′. The cost function J2 basically minimizes the MSE of y′

relative to y. Reprinted from Hsieh [2001b], with permission from the American Meteorological
Society.

By minimizing the cost function J = −cor(u, v), one finds the parameters which maximize the
correlation cor(u, v). After the forward mapping with the double-barreled NN has been solved,
inverse mappings from the canonical variates u and v to the original variables, as represented by
the two standard feed-forward NNs on the right side of Fig. 7, are to be solved, where the MSE
of their outputs x′ and y′ are minimized with respect to x and y, respectively. For details, see
Appendix C.

Consider the following test problem from Hsieh [2000]. Let

X1 = t − 0.3t2, X2 = t + 0.3t3, X3 = t2 , (8)

Y1 = t̃3, Y2 = −t̃ + 0.3t̃3, Y3 = t̃ + 0.3t̃2 , (9)

where t and t̃ are uniformly distributed random numbers in [−1, 1]. Also let

X ′
1 = −s − 0.3s2, X ′

2 = s − 0.3s3, X ′
3 = −s4, (10)

Y ′
1 = sech(4s), Y ′

2 = s + 0.3s3, Y ′
3 = s − 0.3s2, (11)

where s is a uniformly distributed random number in [−1, 1]. The shapes described by the X
and X′ vector functions are displayed in Fig. 8, and those by Y and Y′ in Fig. 9. To lowest
order, Eq. (8) for X describes a quadratic curve, and Eq. (10) for X′, a quartic. Similarly, to
lowest order, Y is a cubic, and Y′ a hyperbolic secant. The signal in the test data was produced
by adding the second mode (X′, Y′) to the first mode (X, Y), with the variance of the second
mode being 1/3 that of the first mode. A small amount of Gaussian random noise, with standard
deviation equal to 10% of the signal standard deviation, was also added to the dataset. The
dataset of N = 500 points was then standardized (i.e. each variable with mean removed was
normalized by the standard deviation). Note that different sequences of random numbers tn and
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Figure 8: The curve made up of small circles shows the first theoretical mode X generated from
Eq. (8), and the solid curve, the second mode X′, from Eq. (10). Panel (a) is a projection in the
x1-x2 plane, (b) in the x1-x3 plane, (c) in the x2-x3 plane, and (d) a 3-dimensional plot. The
actual data set of 500 points (shown by dots) was generated by adding mode 2 to mode 1 (with
mode 2 having 1/3 the variance of mode 1) and adding a small amount of Gaussian noise. Follows
Hsieh [2000].
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Figure 9: The curve made up of small circles shows the first theoretical mode Y generated from
Eq. (9), and the solid curve, the second mode Y′, from Eq. (11). Panel (a) is a projection in
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data set of 500 points was generated by adding mode 2 to mode 1 (with mode 2 having 1/3 the
variance of mode 1) and adding a small amount of Gaussian noise. Follows Hsieh [2000].
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Figure 10: The NLCCA mode 1 in x-space shown as a string of (densely overlapping) small
circles. The theoretical mode X′ is shown as a thin solid curve and the linear (CCA) mode shown
as a thin dashed line. The dots display the 500 data points. The number of hidden neurons (see
Appendix C) used is l2 = m2 = 3. Follows Hsieh [2000].

t̃n (n = 1, . . . , N) were used to generate the first modes X and Y, respectively. Hence these two
dominant modes in the x-space and the y-space are unrelated. In contrast, as X′ and Y′ were
generated from the same sequence of random numbers sn, they are strongly related. The NLCCA
was applied to the data, and the first NLCCA mode retrieved (Figs. 10 and 11) resembles the
expected theoretical mode (X′, Y′). This is quite remarkable considering that X′ and Y′ have
only 1/3 the variance of X and Y, i.e. the NLCCA ignores the large variance of X and Y, and
succeeded in detecting the nonlinear correlated mode (X′, Y′). In contrast, if the NLPCA is
applied to x and y separately, then the first NLPCA mode retrieved from x will be X, and
the first mode from y will be Y. This illustrates the essential difference between NLPCA and
NLCCA.

The NLCCA has been applied to analyze the tropical Pacific sea level pressure anomaly (SLPA)
and SSTA fields [Hsieh, 2001b], where the 6 leading PCs of the SLPA and the 6 PCs of the SSTA
during 1950-2000 were inputs to an NLCCA model. The first NLCCA mode is plotted in the
PC-spaces of the SLPA and the SSTA (Fig. 12), where only the 3 leading PCs are shown. For the
SLPA (Fig. 12a), in the PC1-PC2 plane, the La Niña states are in the left corner (corresponding
to low u values), while the El Niño states are in the upper right corner (high u values). The
CCA solutions are shown as thin straight lines. For the SSTA (Fig. 12b), in the PC1-PC2 plane,
the first NLCCA mode is a U-shaped curve linking the La Niña states in the upper left corner
(low v values) to the El Niño states in the upper right corner (high v values). In general, the
nonlinearity is greater in the SSTA than in the SLPA, as the difference between the CCA mode
and the NLCCA mode is greater in Fig. 12b than in Fig. 12a.
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Figure 11: The NLCCA mode 1 in y-space shown as a string of overlapping small circles. The
thin solid curve is the theoretical mode Y′, and the thin dashed line, the CCA mode. Follows
Hsieh [2000].

The MSE of the NLCCA divided by the MSE of the CCA is a useful measure on how different
the nonlinear solution is relative to the linear solution— a smaller ratio means greater nonlinearity,
while a ratio of 1 means the NLCCA can only find a linear solution. This ratio is 0.951 for the
SLPA and 0.935 for the SSTA, confirming that the mapping for the SSTA was more nonlinear than
that for the SLPA. When the data record was divided into two halves (1950-1975, and 1976-1999)
to be separatedly analyzed by the NLCCA, Hsieh [2001b] found that this ratio decreased for the
second half, implying an increase in the nonlinearity of ENSO during the more recent period.

For the NLCCA mode 1, as u varies from its minimum value to its maximum value, the SLPA
field varies from the strong La Niña phase to the strong El Niño phase (Fig. 13). The zero contour
is further west during La Niña (Fig. 13a) than during strong El Niño (Fig. 13b). Similarly, as v
varies from its minimum to its maximum, the SSTA field varies from strong La Niña to strong El
Niño (Fig. 14), revealing that the SST anomalies during La Niña are centered further west of the
anomalies during El Niño.

Wu and Hsieh [2002, 2003] studied the relation between the tropical Pacific wind stress
anomaly (WSA) and SSTA fields using the NLCCA. Wu and Hsieh [2003] found notable in-
terdecadal changes of ENSO behaviour before and after the mid 1970s climate regime shift, with
greater nonlinearity found during 1981-99 than during 1961-75. Spatial asymmetry (for both
SSTA and WSA) between El Niño and La Niña epidodes was significantly enhanced in the later
period. During 1981-99, the location of the equatorial easterly WSA in the NLCCA solution
during La Niña was unchanged from the earlier period, but during El Niño, the westerly WSA
was shifted eastward by up to 30◦. From dynamical considerations based on the delay-oscillator
theory for ENSO (where the further east the location of the WSA, the longer is the duration of
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Figure 12: The NLCCA mode 1 between the tropical Pacific (a) SLPA and (b) SSTA, plotted
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SSTA data. The NLCCA solution was obtained with the number of hidden neurons l2 = m2 = 2;
with l2 = m2 = 1, only a linear solution can be found. Adapted from Hsieh [2001b].
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Figure 13: The SLPA field when the canonical variate u of the NLCCA mode 1 is at (a) its
minimum (strong La Niña), and (b) its maximum (strong El Niño). Contour interval is 0.5 mb.
Reprinted from Hsieh [2001b], with permission from the American Meteorological Society.
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the resulting SSTA in the eastern equatorial Pacific), Wu and Hsieh [2003] concluded that this
interdecadal change would lengthen the duration of the ENSO warm phase, but leave the duration
of the cool phase unchanged— which was confirmed with numerical model experiments. This is
an example of a nonlinear data analysis detecting a feature missed by previous studies using linear
techniques, which in turn leads to new dynamical insight.

The NLCCA has also been applied to study the relation between the tropical Pacific SSTA and
the Northern Hemisphere mid-latitude winter atmospheric variability (500 mb geopotential height
and North American surface air temperature) simulated in an atmospheric general circulation
model (GCM), demonstrating the value of NLCCA as a nonlinear diagnostic tool for GCMs [Wu
et al., 2003].

4 Nonlinear singular spectrum analysis (NLSSA)

By the 1980s, interests in chaos theory and dynamical systems led to further extension of the
PCA method to singular spectrum analysis (SSA) [Elsner and Tsonis, 1996; Golyandina et al.,
2001; Ghil et al., 2002]. Given a time series yj = y(tj) (j = 1, . . . , N), lagged copies of the time
series are stacked to form the augmented matrix Y,

Y =




y1 y2 · · · yN−L+1

y2 y3 · · · yN−L+2
...

...
...

...
yL yL+1 · · · yN


 . (12)

This matrix has the same form as the data matrix produced by L variables, each being a time
series of length n = N − L + 1. Y can also be viewed as composed of its column vectors yj ,
forming a vector time series y(tj), j = 1, . . . , n. The standard PCA can be performed on the
augmented data matrix Y, resulting in

y(tj) =
∑

i

xi(tj) ei , (13)

where xi is the ith principal component (PC), a time series of length n, and ei is the ith eigenvector
(or loading vector) of length L . Together, xi and ei, represent the ith SSA mode. This resulting
method is the SSA with window L.

In the multivariate case, with M variables yk(tj) ≡ ykj , (k = 1, . . . , M ; j = 1, . . . , N), the
augmented matrix can be formed by letting

Y =




y11 y12 · · · y1,N−L+1
...

...
...

...
yM1 yM2 · · · yM,N−L+1

...
...

...
...

y1L y1,L+1 · · · y1N
...

...
...

...
yML yM,L+1 · · · yMN




. (14)

PCA can again be applied to Y to get the SSA modes. resulting in the multichannel SSA (MSSA)
method, also called the space-time PCA (ST-PCA) method, or the extended EOF (EEOF) method
(though in typical EEOF applications, only a small number of lags are used). For brevity, we
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will use the term SSA to denote both SSA and MSSA. Commonly used in the meteorological and
oceanographic communities [Ghil et al., 2002], SSA has also been used to analyze solar activity
[Watari , 1996; Rangarajin and Barreto, 2000], and storms on Mars [Hollingsworth et al., 1997].

Hsieh and Wu [2002] proposed the nonlinear SSA (NLSSA) method: Assume SSA has been
applied to the dataset, and after discarding the higher modes, we have retained the leading PCs,
x(t) = [x1, . . . , xl], where each variable xi, (i = 1, . . . , l), is a time series of length n. The variables
x are the inputs to the NLPCA(cir) network (Fig. 2b). The NLPCA(cir), with its ability to
extract closed curve solutions, is particularly ideal for extracting periodic or wave modes in the
data. In SSA, it is common to encounter periodic modes, each of which has to be split into a
pair of SSA modes [Elsner and Tsonis, 1996], as the underlying PCA technique is not capable of
modelling a periodic mode (a closed curve) by a single mode (a straight line). Thus, two (or more)
SSA modes can easily be combined by NLPCA(cir) into one NLSSA mode, taking the shape of a
closed curve. When implementing NLPCA(cir), Hsieh [2001a] found that there were two possible
configurations, a restricted configuration and a general configuration (see Appendix B). We will
use the general configuration here. After the first NLSSA mode has been extracted, it can be
subtracted from x to get the residual, which can be input again into the same network to extract
the second NLSSA mode, and so forth for the higher modes.

To illustrate the difference between the NLSSA and the SSA, consider a test problem with a
non-sinusoidal wave of the form

f(t) =




3 for t = 1, ..., 7
−1 for t = 8, ..., 28

periodic thereafter .
(15)

This is a square wave with the peak stretched to be 3 times as tall but only 1/3 as broad as the
trough, and has a period of 28. Gaussian noise with twice the standard deviation as this signal
was added, and the time series was normalized to unit standard deviation (Fig. 15). The time
series has 600 data points.

SSA with window L = 50 was applied to this time series, with the first eight eigenvectors
shown in Fig. 16. The first 8 modes individually accounted for 6.3, 5.6, 4.6, 4.3, 3.3, 3.3, 3.2,
and 3.1 % of the variance of the augmented time series y. The leading pair of modes displays
oscillations of period 28, while the next pair manifests oscillations at a period of 14, i.e. the
first harmonic. The non-sinusoidal nature of the SSA eigenvectors can be seen in mode 2 (Fig.
16), where the trough is broader and shallower than the peak, but nowhere as intense as in the
original stretched square wave signal. The PCs for modes 1-4 are also shown in Fig. 17. Both
the eigenvectors (Fig. 16) and the PCs (Fig. 17) tend to appear in pairs, each member of the pair
having similar appearance except for the quadrature phase difference.

The first 8 PC time series were served as inputs to the NLPCA(cir) network, with m (the
number of hidden neurons in the encoding layer) ranging from 2 to 8 (and the weight penalty
parameter P = 1, see Appendix B). The MSE dropped with increasing m, until m = 5, beyond
which the MSE showed no further improvement. The resulting NLSSA mode 1 (with m = 5) is
shown in Fig. 18. Not surprisingly, the PC1 and PC2 are united by the approximately circular
curve. What is more surprising, are the Lissajous-like curves found in the PC1-PC3 plane (Fig.
18b) and in the PC1-PC4 plane (Fig. 18c), indicating relations between the first SSA mode and
the higher modes 3 and 4. (It is well known that for two sinusoidal time series z1(t) and z2(t)
oscillating at frequencies ω1 and ω2, a plot of the trajectory in the z1-z2 plane reveals a closed
Lissajous curve if and only if ω2/ω1 is a rational number). There was no relation found between
PC1 and PC5, as PC5 appeared independent of PC1 (Fig. 18d). However, with less noise in the
input, relations can be found between PC1 and PC5, and even higher PCs.

24



0 100 200 300 400 500 600

−2

0

2

4

6

8

10

12

time

y

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 15: The bottom curve (a) shows the noisy time series y containing a stretched square wave
signal, whereas curve (b) shows the stretched square wave signal, which we will try to extract
from the noisy time series. Curves (c), (d) and (e) are the reconstructed components (RC) from
SSA leading modes, using 1, 3 and 8 modes, respectively. Curve (f) is the NLSSA mode 1 RC
(NLRC1). The dashed lines show the means of the various curves, which have been vertically
shifted for better visualization.
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Figure 16: The first eight SSA eigenvectors as a function of time lag. The top panel shows mode
1 (solid curve) and mode 2 (dashed curve); the second panel from top shows mode 3 (solid) and
mode 4 (dashed); the third panel from top shows mode 5 (solid) and mode 6 (dashed); and the
bottom panel shows mode 7 (solid) and mode 8 (dashed).
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Figure 17: The PC time series of SSA mode 1 (solid curve) and mode 2 (dashed curve) (top
panel), mode 3 (solid) and mode 4 (dashed) (middle panel); and θ, the nonlinear PC from NLSSA
mode 1 (bottom panel). Note θ is periodic, here bounded between −π and π radians.
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Figure 18: The first NLSSA mode indicated by the (overlapping) small circles, with the input data
shown as dots. The input data were the first 8 PCs from the SSA of the time series y containing
the stretched square wave. The NLSSA solution is a closed curve in an 8-dimensional PC space.
The NLSSA solution is projected onto (a) the PC1-PC2 plane, (b) the PC1-PC3 plane, (c) the
PC1-PC4 plane, and (d) the PC1-PC5 plane.
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The NLSSA reconstructed component 1 (NLRC1) is the approximation of the original time
series by the NLSSA mode 1. The neural network output x′ are the NLSSA mode 1 approxi-
mation for the 8 leading PCs. Multiplying these approximated PCs by their corresponding SSA
eigenvectors, and summing over the 8 modes allows the reconstruction of the time series from the
NLSSA mode 1. As each eigenvector contains the loading over a range of lags, each value in the
reconstructed time series at time tj also involves averaging over the contributions at tj from the
various lags.

In Fig. 15, NLRC1 (top curve) from NLSSA is to be compared with the reconstructed com-
ponent (RC) from SSA mode 1 (RC1) (curve c). The non-sinusoidal nature of the oscillations
is not revealed by the RC1, but is clearly manifested in the NLRC1, where each strong narrow
peak is followed by a weak broad trough, similar to the original stretched square wave. Also the
wave amplitude is more steady in the NLRC1 than in the RC1. Using contributions from the
first 2 SSA modes, RC1-2 (not shown) is rather similar to RC1 in appearance, except for a larger
amplitude.

In Fig. 15, curves (d) and (e) show the RC from SSA using the first 3 modes, and the first 8
modes, respectively. These curves, referred to as RC1-3 and RC1-8, respectively, show increasing
noise as more modes are used. Among the RCs, with respect to the stretched square wave time
series (curve b), RC1-3 attains the most favorable correlation (0.849) and RMSE (0.245) , but
remains behind the NLRC1, with correlation (0.875) and RMSE (0.225).

The stretched square wave signal accounted for only 22.6% of the variance in the noisy data.
For comparison, NLRC1 accounted for 17.9%, RC1, 9.4%, and RC1-2, 14.1% of the variance. With
more modes, the RCs account for increasingly more variance, but beyond RC1-3, the increased
variance is only from fitting to the noise in the data.

When classical Fourier spectral analysis was performed, the most energetic bands were the
sine and cosine at a period of 14, the two together accounting for 7.0% of the variance. In this
case, the strong scattering of energy to higher harmonics by the Fourier technique has actually
assigned 38% more energy to the first harmonic (at period 14) than to the fundamental period
of 28. Next, the data record was slightly shortened from 600 to 588 points, so the data record
is exactly 21 times the fundamental period of our known signal— this is to avoid violating the
periodicity assumption of Fourier analysis and the resulting spurious energy scatter into higher
spectral bands. The most energetic Fourier bands were the sine and cosine at the fundamental
period of 28, the two together accounting for 9.8% of the variance, compared with 14.1% of the
variance accounted for by the first two SSA modes. Thus even with great care, the Fourier method
scatters the spectral energy considerably more than the SSA method.

The SSA has also been applied to the multivariate case by Hsieh and Wu [2002]. The tropical
Pacific monthly SLPA data [Woodruff et al ., 1987] during 1950–2000 were used. The first 8 SSA
modes of the SLPA accounted for 7.9%, 7.1%, 5.0%, 4.9%, 4.0%, 3.1%, 2.5% and 1.9% respectively,
of the total variance of the augmented data. In Fig. 19, the first two modes displayed the Southern
Oscillation (SO), the east-west seesaw of SLPA at around the 50-month period, while the higher
modes displayed fluctuations at around the quasi-biennial oscillation (QBO) [Hamilton, 1998]
average period of 28 months.

The eight leading PCs of the SSA were then used as inputs, x1, . . . , x8, to the NLPCA(cir)
network, yielding the NLSSA mode 1 for the SLPA. This mode accounts for 17.1% of the variance
of the augmented data, more than the variance explained by the first two SSA modes (15.0%).
This is not surprising as the NLSSA mode did more than just combine the SSA modes 1 and 2—
it also connects the SSA mode 3 to the SSA modes 1 and 2 (Fig. 20). In the x1-x3 plane, the
bowl-shaped projected solution implies that PC3 tends to be positive when PC1 takes on either
large positive or large negative values. Similarly, in the x2-x3 plane, the hill-shaped projected
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Figure 19: The SSA modes 1-6 for the tropical Pacific sea level pressure anomalies (SLPA)
shown in (a)-(f), respectively. The contour plots display the SSA space-time eigenvectors (loading
patterns), showing the SLPA along the equator as a function of the lag. Solid contours indicate
positive anomalies and dashed contours, negative anomalies, with the zero contour indicated by
the thick solid curve. In a separate panel beneath each contour plot, the PC of each SSA mode is
also plotted as a time series, (where each tick mark on the abscissa indicates the start of a year).
The time of the PC is synchronized to the lag time of 0 month in the space-time eigenvector.
Courtesy of Dr. A. Wu.

30



−100

−50

0

50

100

−100

−50

0

50

100
−100

−50

0

50

100

x
1

x
2

x 3

Figure 20: The NLSSA mode 1 for the tropical Pacific SLPA. The PCs of SSA modes 1 to 8 were
used as inputs x1, . . . , x8 to the NLPCA(cir) network, with the resulting NLSSA mode 1 shown
as (densely overlapping) crosses in the x1-x2-x3 3-D PC space. The projections of this mode onto
the x1-x2, x1-x3 and x2-x3 planes are denoted by the (densely overlapping) small circles, and the
projected data by dots. For comparison, the linear SSA mode 1 is shown by the dashed line in
the 3-D space, and by the projected solid lines on the 2-D planes. From Hsieh and Wu [2002].
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solution indicates that PC3 tends to be negative when PC2 takes on large positive or negative
values. These curves reveal interactions between the longer (50-month) time scale SSA modes 1
and 2, and the shorter (28-month) time scale SSA mode 3.

In the linear case of PCA or SSA, as the PC varies, the loading pattern is unchanged except
for scaling by the PC. In the nonlinear case, as the NLPC varies, the loading pattern changes as it
does not generally lie along a fixed eigenvector. The space-time loading patterns for the NLSSA
mode 1 at various values of the NLPC θ (Fig. 21), manifest prominently the growth and decay
of the negative phase of the SO (i.e. negative SLPA in the eastern equatorial Pacific and positive
SLPA in the west) as time progresses. The negative phase of the SO here is much shorter and
more intense than the positive phase, in agreement with observations, and in contrast to the SSA
modes 1 and 2 (Figs. 19a and b), where the negative and positive phases of the SO are about
equal in duration and magnitude.

The tropical Pacific SSTA field was also analyzed by the NLSSA method in Hsieh and Wu
[2002]. Comparing the NLSSA mode 1 loading patterns with the patterns from the first 2 SSA
modes of the SSTA, Hsieh and Wu [2002] found three notable differences: (i) The presence of
warm anomalies for 24 months followed by cool anomalies for 24 months in the first two SSA
modes, are replaced in the NLSSA mode 1 by warm anomalies for 18 months followed by cool
anomalies for about 33 months— although the cool anomalies can be quite mild for long periods,
they can develop into full La Niña cool episodes. (ii) The El Niño warm episodes are strongest
near the eastern boundary, while the La Niña episodes are strongest near the central equatorial
Pacific in the NLSSA mode 1, an asymmetry not found in the individual SSA modes. (iii) The
magnitude of the peak positive anomalies is significantly larger than that of the peak negative
anomalies in the NLSSA mode 1, again an asymmetry not found in the individual SSA modes. All
three differences indicate that the NLSSA mode 1 is much closer to the observed ENSO properties
than the first two SSA modes are.

Furthermore, from the residual, the NLSSA mode 2 has been extracted by Hsieh and Wu
[2002] for the SLPA field and for the SSTA field. For both variables, the NLSSA mode 2 has a 39-
month period, considerably longer than the QBO periods typically reported by previous studies
using linear techniques [Ghil et al., 2002]. Intriguingly, the coupling between the SLPA and the
SSTA fields for the second nonlinear mode of 39-month period was found to be considerably
stronger than their coupling for the first nonlinear ‘ENSO’ mode of 51-month period [Hsieh and
Wu, 2002]. The NLSSA technique has also been used to study the stratospheric equatorial winds
for the QBO phenomenon [Hsieh and Hamilton, 2003].

5 Summary and conclusions

This paper has reviewed the recent extension of the feedforward NN from its original role for non-
linear regression and classification, to nonlinear PCA (for open and closed curves), nonlinear CCA,
and nonlinear SSA. With examples from the atmosphere and the ocean, notably the ENSO and
the stratospheric QBO phenomena, these NN methods can be seen to advance our understanding
of geophysical phenomena. To highlight only a few of the many new findings by the nonlinear
techniques, we note that the nonlinearity in the tropical Pacific interannual variability has been
found to have increased in decent decades [Hsieh, 2001b; Wu and Hsieh, 2003 ]; that besides the
main coupling at the ENSO time scale of about 51 months, the strongest coupling between the
tropical Pacific SLP and SST has been identified at a second nonlinear mode of 39-month period,
this unusual period itself arising from the interaction between the linear modes with ENSO and
QBO time scales [Hsieh and Wu, 2002]; and that the phase of the stratospheric QBO can be
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Figure 21: The SLPA NLSSA mode 1 space-time loading patterns for various values of the NLPC
θ: (a) θ = 0◦, (b) θ = 60◦, (c) θ = 120◦, (d) θ = 180◦, (e) θ = 240◦ and (f) θ = 300◦. The contour
plots display the SLPA along the equator as a function of the lag time. Contour interval is 0.2
mb. Courtesy of Dr. A. Wu.
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better defined, resulting in an enhancement of the Holton-Tan effect [Hamilton and Hsieh, 2002].
The nonlinear PCA, CCA and SSA codes (written in MATLAB) are freely downloadable from the
author’s web site, http://www.ocgy.ubc.ca/projects/clim.pred.

PCA is widely used for two main purposes: (i) to reduce the dimensionality of the dataset,
and (ii) to extract features or recognize patterns from the dataset. It is purpose (ii) where PCA
can be improved upon. Rotated PCA (RPCA) sacrifices on the amount of variance explained, but
by rotating the PCA eigenvectors, RPCA eigenvectors can point more towards local data clusters
and can therefore be more representative of physical states than the PCA eigenvectors. With the
tropical Pacific SST as an example, it was shown that RPCA represented El Niño states better
than PCA, but neither methods represented La Niña states well. In contrast, nonlinear PCA
(NLPCA), passed through both the clusters of El Niño and La Niña states, thus representing
both well within a single mode— the NLPCA first mode also accounted for more variance of the
dataset than the first mode of PCA or RPCA.

With PCA, the straight line explaining the maximum variance of the data is found. With
NLPCA, the straight line is replaced by a continuous, open curve. NLPCA(cir) (NLPCA with a
circular node at the bottleneck) replaces the open curve with a closed curve, so periodic or wave
solutions can be modelled. When dealing with data containing a nonlinear or periodic structure,
the linear methods scatter the energy into multiple modes, which is usually prevented when the
nonlinear methods are used.

With two data fields x and y, the classical CCA method finds the canonical variate u (from
a linear combination of the x variables), and its partner v (from the y variables), so that the
correlation between u and v is maximized. CCA finds a line in the x-space, where fluctuations
of the x data projected onto this line are most highly correlated with fluctuations of y data
projected onto another line in the y-space. NN can perform nonlinear CCA (NLCCA), where u
and v can be nonlinear functions of the x and y variables, respectively. NLCCA finds a curve in
the x-space, where fluctuations of the x data projected onto this curve are most highly correlated
with fluctuations of y data projected onto another curve in the y-space.

For univariate and multivariate time series analysis, the PCA method has been extended to
the SSA technique. NN can also be used to perform nonlinear SSA (NLSSA): The dataset is
first condensed by the SSA, then several leading PCs from the SSA are chosen as inputs to the
NLPCA(cir) network, which extracts the NLSSA mode by nonlinearly combining the various SSA
modes.

In general, NLSSA has several advantages over SSA: (a) The PCs from different SSA modes are
linearly uncorrelated; however, they may have relationships that can be detected by the NLSSA.
(b) Although the SSA modes are not restricted to sinusoidal oscillations in time like the Fourier
spectral components, in practice they are inefficient in modelling non-sinusoidal periodic signals
(e.g. the stretched square wave in Sec.4), scattering the signal energy into many SSA modes,
similar to the way Fourier spectral analysis scatters the energy of a non-sinusoidal wave to its
higher harmonics. The NLSSA recombines the SSA modes to extract the non-sinusoidal signal,
alleviating the spurious transfer of energy to higher frequencies. In the tropical Pacific, the NLSSA
mode 2 of both the SSTA field and the SLPA field yielded a 39-month signal, considerably lower
in frequency than the QBO-frequency signals found by linear methods.

In summary, the linear methods currently used are often too simplistic to describe complicated
real-world systems, resulting in a tendency to scatter a single oscillatory phenomenon into nu-
merous modes or higher harmonics. This would introduce unphysical spatially standing patterns
or spurious high-frequency energy. These problems are shown to be largely alleviated by the use
of nonlinear methods.

The main disadvantage of NN methods compared with the linear methods lies in their in-

34



stability or nonuniqueness— with local minima in the cost function, optimizations started from
different initial parameters often end up at different minima for the NN approach. A number of
optimization runs starting from different random initial parameters is needed, where the best run
is chosen as the solution— even then, there is no guarantee that the global minimum has been
found. Proper scaling of the input data is essential to avoid having the nonlinear optimization
algorithm searching for parameters with a wide range of magnitudes. Regularization by adding
weight penalty terms to the cost functions generally improved the stability of the NN methods.
Nevertheless, for short records with noisy data, one may not be able to find a reliable nonlinear
solution, and the linear solution may be the best one can extract out of the data. The time
averaging of data (e.g. averaging daily data to yield monthly data) may also, through the Central
Limit Theorem, severely reduce the nonlinearity which can be detected [Yuval and Hsieh, 2002].

Hence, whether the nonlinear approach has a significant advantage over the linear approach
is highly dependent on the dataset— the nonlinear approach is generally ineffective if the data
record is short and noisy, or the underlying physics is essentially linear. For the earth’s climate,
tropical variability such as ENSO and the stratospheric QBO have strong signal-to-noise ratio,
and are handled well by the nonlinear methods; in constrast, in the mid and high latitudes, the
signal-to-noise ratio is much weaker, rendering the nonlinear methods less effective. Presently, the
number of hidden neurons in the NN, and the weight penalty parameters are often determined
by a trial and error approach— adopting techniques such as generalized cross validation [Yuval ,
2000] and information criterion [Burnham and Anderson, 1998] may help in the future to provide
more guidance on the choice of the most appropriate NN architecture. While NN has been widely
used as the main workhorse in nonlinear multivariate and time series analysis, new emerging
techniques such as kernel-based methods [Vapnik , 1998] may play an increasingly important role
in the future.
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Appendix A. The NLPCA model

In Fig. 2a, the transfer function f1 maps from x, the input column vector of length l, to the first
hidden layer (the encoding layer), represented by h(x), a column vector of length m, with elements

h
(x)
k = f1((W(x)x + b(x))k) , (16)

where (with the capital bold font reserved for matrices and the small bold font for vectors), W(x)

is an m × l weight matrix, b(x), a column vector of length m containing the bias parameters,
and k = 1, . . . , m. Similarly, a second transfer function f2 maps from the encoding layer to the
bottleneck layer containing a single neuron, which represents the nonlinear principal component
u,

u = f2(w(x) · h(x) + b
(x)) . (17)
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The transfer function f1 is generally nonlinear (usually the hyperbolic tangent or the sigmoidal
function, though the exact form is not critical), while f2 is usually taken to be the identity
function.

Next, a transfer function f3 maps from u to the final hidden layer (the decoding layer) h(u),

h
(u)
k = f3((w(u)u + b(u))k) , (18)

(k = 1, . . . , m); followed by f4 mapping from h(u) to x′, the output column vector of length l,
with

x′
i = f4((W(u)h(u) + b(u))i) . (19)

The cost function J = 〈‖x − x′‖2〉 is minimized by finding the optimal values of W(x), b(x),
w(x), b

(x), w(u), b(u), W(u) and b(u). The MSE (mean square error) between the NN output x′

and the original data x is thus minimized. The NLPCA was implemented using the hyperbolic
tangent function for f1 and f3, and the identity function for f2 and f4, so that

u = w(x) · h(x) + b
(x)

, (20)

x′
i = (W(u)h(u) + b(u))i . (21)

Furthermore, we adopt the normalization conditions that 〈u〉 = 0 and 〈u2〉 = 1. These
conditions are approximately satisfied by modifying the cost function to

J = 〈‖x − x′‖2〉 + 〈u〉2 + (〈u2〉 − 1)2 . (22)

The total number of (weight and bias) parameters used by the NLPCA is 2lm+4m+ l+1, though
the number of effectively free parameters is two less due to the constraints on 〈u〉 and 〈u2〉.

The choice of m, the number of hidden neurons in both the encoding and decoding layers,
follows a general principle of parsimony. A larger m increases the nonlinear modelling capability
of the network, but could also lead to overfitted solutions (i.e. wiggly solutions which fit to the
noise in the data). If f4 is the identity function, and m = 1, then (21) implies that all x′

i are
linearly related to a single hidden neuron, hence there can only be a linear relation between the
x′

i variables. Thus, for nonlinear solutions, we need to look at m ≥ 2. It is also possible to have
more than one neuron at the bottleneck layer. For instance, with two bottleneck neurons, the
mode extracted will span a 2-D surface instead of a 1-D curve.

The nonlinear optimization was carried out by the MATLAB function ‘fminu’, a quasi-Newton
algorithm. Because of local minima in the cost function, there is no guarantee that the optimiza-
tion algorithm reaches the global minimum. Hence a number of runs with random initial weights
and bias parameters was made. Also, 20% of the data was randomly selected as validation data
and withheld from the training of the NNs. Runs where the MSE was larger for the validation
dataset than for the training dataset were rejected to avoid overfitted solutions. Then the run
with the smallest MSE was selected as the solution.

In general, the most serious problem with NLPCA is the presence of local minima in the
cost function. As a result, optimizations started from different initial parameters often converge
to different minima, rendering the solution unstable or nonunique. Regularization of the cost
function by adding weight penalty terms is an answer.

The purpose of the weight penalty terms is to limit the nonlinear power of the NLPCA,
which came from the nonlinear transfer functions in the network. The transfer function tanh
has the property that given x in the interval [−L, L], one can find a small enough weight w,
so that tanh(wx) ≈ wx, i.e. the transfer function is almost linear. Similarly, one can choose a
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large enough w, so that tanh approaches a step function, thus yielding Z-shaped solutions. If we
can penalize the use of excessive weights, we can limit the degree of nonlinearity in the NLPCA
solution. This is achieved with a modified cost function

J = 〈‖x − x′‖2〉 + 〈u〉2 + (〈u2〉 − 1)2 + P
∑
ki

(W (x)
ki )2 , (23)

where P is the weight penalty parameter. A large P increases the concavity of the cost function,
and forces the weights W(x) to be small in magnitude, thereby yielding smoother and less nonlinear
solutions than when P is small or zero. Hence, increasing P also reduces the number of effectively
free parameters of the model.

The percentage of the variance explained by the NLPCA mode is simply

100% ×
(

1 − 〈‖x − x′‖2〉
〈‖x − x‖2〉

)
, (24)

with x being the mean of x.

Appendix B. The NLPCA(cir) model

At the bottleneck in Fig. 2b, analogous to u in (20), we calculate the pre-states po and qo by

po = w(x) · h(x) + b
(x)

, and qo = w̃(x) · h(x) + b̃(x) , (25)

where w(x), w̃(x) are weight parameter vectors, and b
(x) and b̃(x) are bias parameters. Let

r = (p2
o + q2

o)
1/2 , (26)

then the circular node is defined with

p = po/r , and q = qo/r , (27)

satisfying the unit circle equation p2 + q2 = 1. Thus, even though there are two variables p and q
at the bottleneck, there is only one angular degree of freedom from θ (Fig. 2b), due to the circle
constraint. The mapping from the bottleneck to the output proceeds as in Appendix A, with (18)
replaced by

h
(u)
k = tanh((w(u)p + w̃(u)q + b(u))k) . (28)

When implementing NLPCA(cir), Hsieh [2001a] found that there are actually two possible
configurations: (i) A restricted configuration where the constraints 〈p〉 = 0 = 〈q〉 are applied,
and (ii) a general configuration without the constraints. With (i), the constraints can be satisfied
approximately by adding the extra terms 〈p〉2 and 〈q〉2 to the cost function. If a closed curve
solution is sought, then (i) is better than (ii) as it has effectively two fewer parameters. However,
(ii), being more general than (i), can more readily model open curve solutions like a regular
NLPCA. The reason is that if the input data mapped onto the p-q plane covers only a segment
of the unit circle instead of the whole circle, then the inverse mapping from the p-q space to the
output space will yield a solution resembling an open curve. Hence, given a dataset, (ii) may yield
either a closed curve or an open curve solution. Its generality comes with a price, namely that
there may be more local minima to contend with. The number of parameters is 2lm+6m+ l +2,
though under configuration (i), the number of effectively free parameters is two less, due to the
imposed constraints. Unlike NLPCA which reduces to PCA when only linear transfer functions
are used, NLPCA(cir) does not appear to have a linear counterpart.
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Appendix C. The NLCCA model

In Fig. 7, the inputs x and y are mapped to the neurons in the hidden layer:

h
(x)
k = tanh((W(x)x + b(x))k), h(y)

n = tanh((W(y)y + b(y))n), (29)

where W(x) and W(y) are weight matrices, and b(x) and b(y), bias parameter vectors. The
dimensions of x, y, h(x) and h(y) are l1, m1, l2 and m2 respectively.

The canonical variate neurons u and v are calculated from a linear combination of the hidden
neurons h(x) and h(y), respectively, with

u = w(x) · h(x) + b
(x)

, v = w(y) · h(y) + b
(y)

. (30)

These mappings are standard feedforward NNs, and are capable of representing any continuous
functions mapping from x to u and from y to v to any given accuracy, provided large enough l2
and m2 are used.

To maximize cor(u, v), the cost function J = −cor(u, v) is minimized by finding the optimal
values of W(x), W(y), b(x), b(y), w(x), w(y), b

(x) and b
(y). We also adopt the constraints 〈u〉 =

0 = 〈v〉, and 〈u2〉 = 1 = 〈v2〉, which are approximately satisfied by modifying the cost function to

J = −cor(u, v) + 〈u〉2 + 〈v〉2 + (〈u2〉1/2 − 1)2 + (〈v2〉1/2 − 1)2 . (31)

On the right side of Fig. 7, the top NN (a standard feed-forward NN) maps from u to x′ in
two steps:

h
(u)
k = tanh((w(u)u + b(u))k) , and x′ = W(u)h(u) + b(u)

. (32)

The cost function J1 = 〈‖x′−x‖2〉 is minimized by finding the optimal values of w(u), b(u), W(u)

and b(u). The MSE between the NN output x′ and the original data x is thus minimized.
Similarly, the bottom NN on the right side of Fig. 7 maps from v to y′:

h(v)
n = tanh((w(v)v + b(v))n) , and y′ = W(v)h(v) + b(v)

, (33)

with the cost function J2 = 〈‖y′ − y‖2〉 minimized. The total number of parameters used by
the NLCCA is 2(l1l2 + m1m2) + 4(l2 + m2) + l1 + m1 + 2, though the number of effectively free
parameters is four less due to the constraints on 〈u〉, 〈v〉, 〈u2〉 and 〈v2〉.

A number of runs mapping from (x,y) to (u, v), using random initial parameters, was per-
formed. The run attaining the highest cor(u, v) was selected as the solution. Next a number of
runs (mapping from u to x′) was used to find the solution with the smallest MSE in x′. Finally,
a number of runs was used to find the solution yielding the smallest MSE in y′. After the first
NLCCA mode has been retrieved from the data, the method can be applied again to the residual
to extract the second mode, and so forth.

That the CCA is indeed a linear version of this NLCCA can be readily seen by replacing the
hyperbolic tangent transfer functions in (29), (32) and (33) with the identity function, thereby
removing the nonlinear modeling capability of the NLCCA. Then the forward maps to u and v
involve only a linear combination of the original variables x and y, as in the CCA.

With three NNs in NLCCA, overfitting can occur in any of the three networks. With noisy
data, the three cost functions are modified to:

J = −cor(u, v)+〈u〉2+〈v〉2+(〈u2〉1/2−1)2+(〈v2〉1/2−1)2+P


∑

ki

(W (x)
ki )2 +

∑
nj

(W (y)
nj )2


 , (34)
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J1 = 〈‖x′ − x‖2〉 + P1

∑
k

(w(u)
k )2 , (35)

J2 = 〈‖y′ − y‖2〉 + P2

∑
n

(w(v)
n )2 , (36)

where P , P1 and P2 are nonnegative weight penalty parameters. Since the nonlinearity of a
network is controlled by the weights in the hyperbolic tangent transfer function, only those weights
are penalized.
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