(Version 2.3.1)

MATLAB codes for:
Nonlinear principal component analysis
Nonlinear canonical correlation analysis
Nonlinear singular spectrum analysis

William W. Hsieh

Department of Earth and Ocean Sciences,
University of British Columbia,
Vancouver, B.C. V6T 1Z4, Canada

Copyright © 2004 William W. Hsieh
1 Introduction

For a set of variables \(\{x_i\} \), principal component analysis (PCA) (also called Empirical Orthogonal Function analysis) extracts the eigenmodes of the data covariance matrix. It is used to (i) reduce the dimensionality of the dataset, and (ii) extract features from the dataset. When there are two sets of variables \(\{x_i\} \) and \(\{y_j\} \), canonical correlation analysis (CCA) finds the modes of maximum correlation between \(\{x_i\} \) and \(\{y_j\} \), rendering CCA a standard tool for discovering relations between two fields. The PCA method has also been extended to become a multivariate spectral method — the singular spectrum analysis (SSA). See von Storch and Zwiers (1999) for a description of these classical methods.

Neural network (NN) models have been widely used for nonlinear regression and classification (with codes available in many computer packages, e.g. in the MATLAB Neural Network toolbox). Recent developments in neural network modelling have further led to the nonlinear generalization of PCA, CCA and SSA.

This manual for NeuMATSA (Neuralnets for Multivariate And Time Series Analysis) describes the neural network codes developed at UBC for nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). There are several approaches to nonlinear PCA; here, we follow the Kramer (1991) approach, and the Kirby and Miranda (1996) generalization to closed curves. Options of regularization with weight penalty have been added to these models. The NLCCA model is based on that proposed by Hsieh (2000).

To keep this manual brief, the user is referred to the review paper Hsieh (2004) for details. This and other relevant papers are downloadable from the web site: http://www.ocgy.ubc.ca/projects/clim.pred/download.html. This manual assumes the reader is already familiar with Hsieh (2004), and is aware of the relatively unstable nature of neural network models because of local minima in the cost function, and the danger of overfitting (i.e. using the great flexibility of NN models to fit to the noise in the data). The codes are written in MATLAB, and the function fminu from the MATLAB Optimization toolbox (version 1.5) must be available to perform the nonlinear optimization. [In the newer version 2 of the Optimization toolbox, fminu has been superceded by fminunc, so calls to fminu in the m-file calcmode.m may need modification].

This manual is organized as follows: Section 2 describes the NLPCA code of Hsieh (2001a), which is based on Kramer (1991). Section 3 describes the ‘NLPCA.cir’ code, i.e. the NLPCA generalized to closed curves by having a circular neuron at the bottleneck, as in Hsieh (2001a), which follows Kirby and Miranda (1996). This code is also used for NLSSA (Hsieh and Wu, 2002). Section 4 describes the NLCCA code of Hsieh (2001b), which is an improved version of Hsieh (2000). A demo problem is set up in each section. The sans serif font is used to denote the names of computer commands, files and variables. Section 5 is on hints and trouble-shooting. The latest version of codes is based on Hsieh (2004).

Whether the nonlinear approach has a significant advantage over the linear approach is highly dependent on the dataset — the nonlinear approach is generally ineffective if the data record is short and noisy, or the underlying relation is essentially linear. Because of local minima in the cost function, an ensemble of optimization runs from random initial weight parameters is needed, and the best member of the ensemble selected as the solution. There is no guarantee that the best member is close to the global minimum. Presently, the number of hidden neurons and the weight penalty parameters are determined largely by a trial and error approach. Future research will hopefully provide more guidance on their choice.

The computer programs are free software under the terms of the GNU General Public License as published by the Free Software Foundation. Please read the file ‘LICENSE’ in the program.
directory before using the software.

This new NeuMATSA version 2.3 corrects an earlier version bug in the optional function extracalc.m (used for handling new data without having to retrain the networks). As extracalc.m is not used by the main programs, the bug does not affect results if extracalc.m has not been invoked explicitly by the user. However, correcting the bug resulted in some changes in a few other functions, but the modified functions are still completely compatible with the main programs (e.g. nlpca1.m, nlcca1.m, etc.) of version 2.2. (Also dropped from version 2.3 are the extra computations of various information criteria, such as the Akaike Information Criterion, as it is doubtful that they are accurate enough to be of use.)

2 Nonlinear Principal Component Analysis

2.1 Files in the directory for NLPCA

The downloaded tar file NLPCA.tar can be uncompressed with the Unix tar command:

tar -xf NLPCA.tar

and a new directory NLPCA will be created containing the following files:

setdat.m sets up the demo problem, produces a demo dataset xdata which is stored in the file data1.mat. This demo problem is instructive on how NLPCA works. To see the demo dataset, the reader should get onto MATLAB, and type in: setdat which also creates a postscript plot file tempx.ps. The plot displays the two theoretical modes, and the data xdata (generated from the two theoretical modes plus a little Gaussian noise) (shown as dots). The objective is to use NLPCA to retrieve the two underlying theoretical modes from xdata.

nlpca1.m is the main program for calculating the NLPCA mode 1. (Here xdata is loaded). To run NLPCA on the demo dataset on unix, use:

matlab < nlpca1.m > out1new &

(The ‘&’ allows unix to run the job on the background, as this run could take a good fraction of an hour). Compare the new output file out1new with the downloaded output file out1 in this directory; they should be similar. The user should then use nlpca1.m as a template for his/her own main program.

plmode1.m plots the output mode 1, also writing out the plot on an (encapsuled) postscript file. Alternatively, pltmode1.m gives a more compact plot.

nlpca2.m is the main program for calculating the NLPCA mode 2, after removing the NLPCA mode 1 from the data. On unix, use: matlab < nlpca2.m > out2new &

Compare the new output file out2new with out2.

plmode2.m plots the output mode 2, and writes out the plot on a postscript file. Alternatively, pltmode2.m gives a more compact plot.

param.m contains the parameters for the problem. It contains the parameters for the demo problem. After the demo, the user will need to put the parameters relevant to his/her problem into this file.

out1 and out2 are the downloaded output files from the UBC runs of nlpca1.m and nlpca2.m for the demo problem. Compare them with the new output files out1new and out2new generated by the user.
Figure 1: The NN model for calculating nonlinear PCA (NLPCA). There are 3 ‘hidden’ layers of variables or ‘neurons’ (denoted by circles) sandwiched between the input layer \(x \) on the left and the output layer \(x' \) on the right. (In the code, \(\text{xdata} \) is the input, while \(xi \) is the output). Next to the input layer is the encoding layer, followed by the bottleneck layer (with a single neuron \(u \)), which is then followed by the decoding layer. A nonlinear function maps from the higher dimension input space to the lower dimension bottleneck space, followed by an inverse transform mapping from the bottleneck space back to the original space represented by the outputs, which are to be as close to the inputs as possible by minimizing the cost function \(J = \langle \| x - x' \|^2 \rangle \). Data compression is achieved by the bottleneck, with the bottleneck neuron giving \(u \), the nonlinear principal component.

\text{model}_m1.mat, ..., \text{model}_m4.mat are the extracted nonlinear mode 1, with \(m \) (the number of hidden neurons in the encoding layer) = 1, 2, 3, 4, respectively. (These files were downloaded originally, but if you have rerun the demo problem, \text{nlpca1.m} would overwrite these files).

After removing NLPCA mode 1 (with \(m = 2 \)) from the data, the residual was put into the NLPCA model again to extract the second NLPCA mode, again with \(m \) varying from 1 to 4, yielding the files \text{mode2_m1.mat},... \text{mode2_m4.mat}, respectively.

\text{linmode1.mat} is the extracted linear mode 1 (i.e. the PCA mode 1).

\text{manual.m} contains the online manual. To see manual while in MATLAB, type in: \text{help manual}

The remaining files do not in general require modifications by the user:

\text{chooseTestSet.m} randomly divides the dataset into a training set and a test set (also called a validation set). Different ensemble members will in general have different training datasets and different test sets.

\text{calcmode.m} computes the NLPCA mode (or PCA mode).

\text{costfn.m} computes the cost function.

\text{mapu.m} maps from \(\text{xdata} \) to \(u \), the nonlinear PC (i.e. the value of the bottleneck neuron) (Fig. 1).

\text{invmapx.m} computes the inverse map from \(u \) to \(xi \), where \(xi \) is the NLPCA approximation to the original \(\text{xdata} \).
nondimen.m and dimen.m are used for scaling and descaling the data. The input are nondimensionalized according to the scaling option selected, NLPCA is then performed, and the final results are again dimensionalized.

extracalc.m (optional) can be used for projecting new data onto an NLPCA mode, or for examining the solution of any ensemble member from a saved NLPCA run.

2.2 Parameters stored in param.m for NLPCA

Parameters are classified into 3 categories, ‘*’ means the user normally has to change the value to fit the problem. ‘+’ means the user may want to change the value, and ‘-’ means the user rarely has to change the value.

+ iprint = 0, 1, or 2 increases the amount of printout.
 Note: Printout summary from an output file (e.g. out1) can be extracted by the unix grep command: grep # out1

- isave = 1 only saves the best solution in a .mat file, plus W (containing all weight and bias parameters) and MSEx (mean square error) of all ensemble members. isave = 2 saves all ensemble member solutions (more memory required).

- linear = 0 means NLPCA; linear = 1 essentially reduces to PCA. [When linear = 1, it is recommended that m, the number of hidden neurons in the encoding layer, be set to 1, and testfrac (see below) be set to 0].

* nensemble is the number of members in the ensemble. (Many ensemble members may converge to shallow local minima and hence wasted).

- testfrac = 0 does not reserve a portion of the data for testing or validation. All data are used for training. Best if data is rather clean, or a linear solution is wanted. testfrac > 0 (usually between 0.15 to 0.25), then a fraction of the data record will be randomly selected as test data. Training is stopped if the MSE increases in the test data by more than the threshold given by earlystop_tol.
 Note: with testfrac > 0, different ensemble members will work with different training datasets, so there will be more scatter in the solutions of individual ensemble members than when testfrac = 0 (where all members have the same training dataset, as all data are used for training).

+ segmentlength = 1 if autocorrelation of the data is not of concern; otherwise the user might want to set segmentlength to about the autocorrelation time scale. Data for training and testing are chosen in segments with length equal to segmentlength.

+ overfit_tol is the tolerance for overfitting, should be 0 (recommended) or a small positive number (0.1 or less). Only ensemble members having MSE over the test set no worse than (MSE over the training set)*(1+overfit_tol) are accepted, and the selected solution is the member with the lowest MSE over all the data.
 When overfit_tol = 0, program automatically chooses an overfit tolerance level to decide which ensemble members to accept. [The program calculates overfit_tol2, the average value of MSExtest - MSExtrain for ensemble members where MSExtest is less than MSExtrain, i.e.
MSE for the test data is less than that for the training data. The program then also accepts ensemble members where \(\text{MSE}_{\text{test}}\) exceeds \(\text{MSE}_{\text{train}}\) by no more than \(\text{overfit}_\text{tol}\).

+ \text{earlystop}_\text{tol} should be around 0.05 to 0.15. (0.1 recommended). This is the ‘early stopping’ method. Best if data is noisy, i.e. overtraining to fit the noise in the data is to be prevented.

* \text{xscaling} controls scaling of the \(x\) variables before performing NLPCA.
 = \(-1\), no scaling (not recommended unless variables are of order 1).
 = \(0\), scales all the \(x_i\) variables by removing the mean and dividing by the standard deviation of each variable. [This could exaggerate the importance of the variables with small standard deviations, leading to strange results].
 = \(1\), scales all \(x_i\) variables by removing the mean and dividing by the standard deviation of the 1st \(x\) variable (i.e. \(x_1\)). (Similarly for \text{xscaling} = 2, 3, ...)

\textbf{Note:} When the \(x\) variables are the principal components of a dataset and the 1st variable is from the leading mode, \text{xscaling} = 1 is strongly preferred. [If \text{xscaling} = 0, the importance of the higher PC modes can be greatly exaggerated by the scaling].

For instance, if the \(x_1\) variable ranges from 0 to 3, and \(x_2\) from 950 to 1050, then poor convergence can be expected from setting \text{xscaling} = \(-1\), while \text{xscaling} = 0 should do much better. However, if the \(x_i\) variables are the leading principal components, with \(x_1\) ranging from 0 to 9, \(x_2\) from -1 to 2, and \(x_3\) from 0 to 1.5, then \text{xscaling} = 0 will greatly exaggerate the importance of the higher modes by causing the standard deviations of the scaled \(x_1\), \(x_2\) and \(x_3\) variables to be all equal to one, whereas \text{xscaling} = 1 will not cause this problem.

+ \text{penalty} scales the weight penalty term in the cost function. If 0, no penalty used, while 0.1-1 uses a reasonable amount of weight penalty. Increasing \text{penalty} leads to less nonlinearity (i.e. less wiggles and zigzags when fitting to noisy data). If \text{penalty} is too large, one gets only the linear solution— and ultimately the trivial solution (where all weights are zero), with all input data mapped to one output point.

+ \text{maxiter} scales the maximum number of function iterations allowed during optimization. Start with 1, increase if needed.

+ \text{initRand} = a positive integer, initializes the random number generator, used for generating random initial weights. Because of multiple minima in the cost function, it is a good idea to rerun with a different value of \text{initRand}, and check that one gets a similar solution.

+ \text{initwt_radius} controls the initial random weight radius for the ensemble. Adjust this parameter if having convergence problem. (Suggest starting with \text{initwt_radius} = 1). The weight radius is smallest for the first ensemble member, increasing by a factor of 4 when the final ensemble member is reached (so the earliest ensemble members tend to be more linear than the later members).

Input dimensions of the network (Fig. 1):

* \(l\) is the number of input variables \(x_i\).

* \(m\) is the number of hidden neurons in the encoding layer (i.e. the first hidden layer). For nonlinear solutions, \(m \geq 2\) is needed.

\textbf{Note:} The total number of (weight and bias) parameters is \(2l \times m + 4m + l + 1\). In general this number should be less than the number of samples in the dataset. If this is not the case,
principal component analysis may be needed to pre-filter the dataset, so only the leading
principal components are used as input to NLPCA.

Note that in version 2.3, the actual calculation follows Hsieh (2004), whereas version 2.2 follows
Hsieh (2001a), hence some very minor differences.

2.3 Variables in the codes for NLPCA

The reader can skip this subsection if he/she does not intend to modify the basic code.

Global variables are given by:

```
global iprint isave linear nensemble testfrac segmentlength ...
  overfit_tol earlystop_tol xscaling penalty maxiter initRand ...
  initwt_radius options n l m iter Jscale xmean xstd...
  ntrain xtrain utrain ntest xtest utest xitest MSEx ...
  ens_accept ens_MSEx ens_W ens_uTRAIN ens_xTRAIN ens_uTEST ens_xTEST ...
  numparam AIC AICc BIC debug
```

If you add or remove variables from this global list, it is CRITICAL that the same changes
are made on ALL of the following files:
nlpa1.m, nlpc2.m, param.m, calcmode.m, costfn.m, mapu.m, invmapx.m, extracalc.m.

options are the options used for the m-file fminu.m in the MATLAB optimization toolbox.

n is the number of samples [automatically determined from xdata].

xdata is an \(l \times n \) data matrix, as there are \(l \) \(x_i \) variables \((i = 1, \ldots, l)\), and \(n \) samples or time
measurements.

(A common error is to input an \(n \times l \) data matrix, i.e. the transpose of the correct matrix,
which leads MATLAB to complain about incorrect matrix dimensions).

If xdata contains time series data, it is useful to record the measurement time in the variable
tx (a \(1 \times n \) vector). The variable tx is not used by NLPCA in the calculations.

iter is the number of function iterations.

Jscale is a scale factor for the cost function \(J \).

xmean and xstd are the means and standard deviations of the xdata variables.

ntrain, ntest are the number of samples for training and for testing.

xtrain, xtest are the portions of xdata used for training and testing.

utrain, utest are the bottleneck neuron values (the NLPC) during training and testing. [mean(utrain)
 = 0 and utrain*utrain'//ntrain = 1 are forced on the cost function J.]

xtrain, xtest are the model predicted values for \(x \) during training and testing.

MSEx is the mean squared error over all data (training+testing).

ens_accept has value 1 if the ensemble member passed the overfit test, otherwise 0.

ens_MSEx saves the MSEx, and ens_W the weights W for all ensemble members.
When isave = 2, all the ensemble solutions, i.e. ens_ustrain ens_xitrain ens_ustest ens_xitest are saved. (This could increase memory usage considerably).

numparam is the number of adjustable model parameters (weights and biases).

[AIC is the Akaike Information Criterion, AICc is AIC corrected for small sample size bias. BIC is the Bayesian Information Criterion. (See Burnham and Anderson, 1998). These are no longer computed in version 2.3, as it is not clear that they are accurate enough to be of use in helping to choose the best model architecture (i.e. with the optimal number of hidden neurons). Hence AIC, AICc and BIC are now unused variables.]

[debug is an unused variable which can be used for debugging purposes.]

3 Nonlinear Principal Component Analysis with a circular bottleneck neuron

3.1 Files in the directory for NLPCA.cir

The downloaded tar file NLPCA.cir.tar can be uncompressed with the Unix tar command:

tar -xf NLPCA.cir.tar

and a new directory NLPCA.cir will be created containing the following files:

setdat.m sets up the demo problem, produces a demo dataset xdata which is stored in the file
data1.mat, and creates a postscript plot file tempx.ps. The plot shows the two theoretical modes, and the input data as dots. The user should go through the demo as in Sec.2.

nlpca1.m is the main program for calculating the NLPCA.cir mode 1. The user should later use nlpca1.m as a template for his/her own main program.

nlpca2.m is the main program for calculating the NLPCA.cir mode 2.

param.m contains the parameters for the problem. The user will need to put the parameters relevant to his/her problem into this file.

out1 and out2 are the output files from running nlpca1.m and nlpca2.m respectively.

mode1_m1.mat, ..., mode1_m4.mat are the extracted nonlinear mode 1 with m (the number of hidden neurons in the encoding layer) = 1, 2, 3, 4, respectively.

After removing mode 1 (with m = 2) from the data, the residual is input into the NLPCA.cir model again to extract the second mode, again with m varying from 1 to 4, yielding the files

mode2_m1.mat, ..., mode2_m4.mat, respectively.

linmode1.mat is the extracted linear mode 1.

plmodel1.m plots the output mode 1, also writing out the plot on an (encapsuled) postscript file. Alternatively, pltmodel1.m gives a more compact plot.

plmodel2.m plots the output mode 2. Alternatively, pltmode2.m gives a more compact plot.

plotpq.m plots the data projected onto the p-q space for modes 1 and 2, and produces a postscript plot file temppq.ps.
Figure 2: The NLPCA with a ‘circular neuron’ at the bottleneck. Instead of having one bottleneck neuron u as in Fig.1, there are now two neurons p and q constrained to lie on a unit circle in the p-q plane, so there is only one free angular parameter (θ). This is also the network used for performing NLSSA (Hsieh and Wu, 2002), where the inputs to this network are the leading principal components from the singular spectrum analysis of a dataset.

manual.m contains the online manual.

The following files do not in general require modifications by the user:

chooseTestSet.m divides the dataset into a training set and a test set.
calcmode.m computes the NLPCA.cir mode.
costfn.m computes the cost function.
mappq.m maps from the input neurons $xdata$ to the bottleneck (p, q) (Fig. 2).
invmapx.m computes the inverse map from (p, q) to the output neurons xi, where xi is the NLPCA approximation to the original $xdata$.
nondimen.m and dimen.m are used for scaling and descaling the data.

extracalc.m (optional) can be used for projecting new data onto an NLPCA.cir mode, or for examining the solution of any ensemble member from a saved NLPCA.cir run.

3.2 Parameters stored in param.m for NLPCA.cir

Parameters are classified into 3 categories, ‘*’ means user normally has to change the value to fit the problem. ‘+’ means user may want to change the value, and ‘−’ means user rarely has to change the value.

$+ iprint = 0, 1, \text{or } 2$ increases the amount of printout.
- **isave** = 1 only saves the best solution in a .mat file, plus \(W \) (containing all weight and bias parameters) and MSEx (mean square error) of all ensemble members. \(\text{isave} = 2 \) saves all ensemble member solutions (more memory required).

- **linear** = 0 means NLPCA.cir. \(\text{linear} = 1 \) uses linear transfer functions, which are not meaningful with a circular neuron, hence not a true option.

* **nenssemble** is the number of members in the ensemble. (Many ensemble members may converge to shallow local minima and hence wasted).

- **testfrac** = 0 does not reserve a portion of the data for testing or validation. All data used for training. Best if data is rather clean.
 testfrac > 0 (usually between 0.15 to 0.25), then a fraction of the data record will be randomly selected as test data. Training is stopped if the MSE (mean squared error) increases in the test data by more than the threshold given by **earlystop**.tol.

+ **segmentlength** = 1 if autocorrelation of the data is not of concern; otherwise the user may want to set **segmentlength** to about the autocorrelation time scale.

+ **overfit_tol** is the tolerance for overfitting, should be 0 (recommended) or a small positive number (0.1 or less). Only ensemble members having MSE over the test set no worse than (MSE over the training set)*(1+**overfit_tol**) are accepted, and the selected solution is the member with the lowest MSE over all the data.
 When **overfit_tol** = 0, program automatically chooses an overfit tolerance level to decide which ensemble members to accept.

+ **earlystop**.tol should be around 0.05 to 0.15. (0.1 recommended). This is the ‘early stopping’ method. Best if data is noisy, i.e. overtraining to fit the noise in the data is to be prevented.

* **xscaling** controls scaling of the \(x \) variables before performing NLPCA.cir.
 \(xscaling = -1 \), no scaling (not recommended unless variables are of order 1).
 \(xscaling = 0 \), scales all the \(x_i \) variables by removing the mean and dividing by the standard deviation of each variable. [This could exaggerate the importance of the variables with small standard deviations, leading to strange results].
 \(xscaling = 1 \), scales all \(x_i \) variables by removing the mean and dividing by the standard deviation of the 1st \(x \) variable. (Similarly for 2, 3, ...)
 Note: When the \(x \) variables are the **principal components** of a dataset and the 1st variable is from the leading mode, **xscaling** = 1 is strongly preferred. [If **xscaling** = 0, the importance of the higher PC modes can be greatly exaggerated by the scaling].

+ **penalty** scales the weight penalty term in the cost function. If 0, no penalty used, while 0.1-1 uses a reasonable amount of weight penalty. Increasing the penalty leads to less nonlinearity (i.e. less wiggles and zigzags when fitting to the data).

+ **maxiter** scales the maximum number of function iterations allowed during optimization. Start with 1, increase if needed.

+ **initRand** = a positive integer, initializes the random number generator, used for generating random initial weights.

+ **initwt_radius** controls the initial random weight radius for the ensemble. Adjust this parameter if having convergence problem. (Suggest starting with **initwt_radius** = 1). The weight radius
is smallest for the first ensemble member, increasing by a factor of 4 when the final ensemble member is reached.

\(+ \) \text{zeromeanpq} = 1 \text{ means the bottleneck neurons } p \text{ and } q \text{ will be forced to have mean}(p) \approx 0 \\
\text{and mean}(q) \approx 0.

\(\text{zeromeanpq} = 0 \) \text{ does not impose this constraint.}

The ‘0’ option is more general, and can give either a closed curve or an ‘open’ curve, but may have more local minima.

The ‘1’ option tends towards a closed curve.

Input dimensions of the networks:

* \(l \) is the number of input variables \(x_i \).

* \(m \) is the number of hidden neurons in the first hidden layer.

\textbf{Note:} The total number of free (weight and bias) parameters is \(2l \times m + 6m + l + 2 \). In general this number should be less than the number of samples in the dataset. If this is not the case, principal component analysis may be needed to pre-filter the dataset, so only the leading principal components are used as input to NLPCA.cir.

Note that in version 2.3, the actual calculation follows Hsieh (2004), whereas version 2.2 follows Hsieh (2001a), hence some very minor differences.

3.3 Variables in the codes for NLPCA.cir

The reader can skip this subsection if he/she does not intend to modify the basic code.

\textit{Global} variables are given by:

```matlab
global iprint isave linear nensemble testfrac segmentlength ...
  overfit_tol earlystop_tol xscaling penalty maxiter initRand ...
  initwt_radius options zeromeanpq n l m iter Jscale xmean xstd...
  ntrain xtrain ptrain qtrain xitrain xtest ptest qtest...
  xtest MSEx ens_accept ens_MSEx ens_W ens_ptrain ens_qtrain...
  ens_xitrain ens_pptest ens_qtest ens_xittest numparam AIC AICc BIC debug
```

If you add or remove variables from this \textit{global} list, it is CRITICAL that the same changes are made on \textbf{ALL} of the following files:

- `nlpca1.m`
- `nlpca2.m`
- `param.m`
- `calcmode.m`
- `costfn.m`
- `mappq.m`
- `invmappx.m`
- `extracalc.m`

\textbf{options} are the options used for the m-file `fminu.m` in the MATLAB optimization toolbox.

\(n \) is the number of samples [automatically determined from \(xdata \)].

\(xdata \) is an \(l \times n \) data matrix, as there are \(l \) ‘\(x_i \)’ variables, and \(n \) samples or time measurements.

\(\text{iter} \) is the number of function iterations.

\(Jscale \) is a scale factor for the cost function \(J \).

\(xmean \) and \(xstd \) are the means and standard deviations of the \(xdata \) variables.

\(ntrain, ntest \) are the number of samples for training and for testing.
xtrain, xtest are the portions of xdata used for training and testing.

ptrain, ptest are the bottleneck neuron values (the NLPC) during training and testing. Similarly for qtrain, qtest.

xtrain, xtest are the model predicted values for x during training and testing.

MSEx is the mean squared error of x over all data (training+testing).

ens.accept has value 1 if the ensemble member passed the overfit test, otherwise 0.

ens.MSEx saves the MSEx, and ens.W the weights W for all ensemble members.
 When isave = 2, all the ensemble solutions, i.e. ens.utrain ens.xtrain ens.utest ens.xtest are saved. (This could increase memory usage considerably).

numparam is the number of adjustable model parameters (weights and biases).

[AIC is the Akaike Information Criterion, AICc is AIC corrected for small sample size bias. BIC is the Bayesian Information Criterion. (See Burnham and Anderson, 1998). These are no longer computed in version 2.3, as it is not clear that they are accurate enough to be of use in helping to choose the best model architecture (i.e. with the optimal number of hidden neurons). Hence AIC, AICc and BIC are now unused variables.]

[debug is an unused variable which can be used for debugging purposes.]

4 Nonlinear Canonical Correlation Analysis

The downloaded tar file NLCCA.tar can be uncompressed with the Unix tar command:

tar -xf NLCCA.tar

and a new directory NLCCA will be created containing the following files:

4.1 Files in the directory for NLCCA

set2dat.m sets up the demo problem, produces two datasets xdata and ydata which are stored in the file data1.mat. It also produces two PostScript plot files tempx.ps and tempy.ps, with tempx.ps containing the xdata (shown as dots), and its two underlying theoretical modes, and tempy.ps containing the ydata and its two theoretical modes. The objective is to use NLCCA to retrieve the two underlying theoretical modes from xdata and ydata.

nlcca1.m is the main program for calculating the NLCCA mode 1. (Here the datasets xdata and ydata are loaded). The user should use this file as a template for his/her own main program.

dlcca2.m is the main program for calculating the NLCCA mode 2.

param.m contains the parameters for the problem. The user will need to put the parameters relevant to his/her problem into this file.

out1 and out2 are the outputs from running nlcca1 and nlcca2 respectively.

model1.h2.mat and model1.h3.mat are the extracted nonlinear mode 1 with number of hidden neurons l2 = m2 = 2 and 3, respectively. After subtracting model1 (with l2 = m2 = 3) from the data, the residual was fed into the NLCCA model to extract the second NLCCA mode—again with the number of hidden neurons l2 = m2 = 2, 3, yielding the files mode2.h2.mat and mode2.h3.mat, respectively.
Figure 3: The three NNs used to perform NLCCA. The double-barreled NN on the left maps from the inputs x and y to the canonical variates u and v. Starting from the left, there are l_1 input x variables, denoted by circles. The information is then mapped to the next layer (to the right)—a ‘hidden’ layer $h^{(x)}$ (with l_2 neurons). For input y, there are m_1 neurons, followed by a hidden layer $h^{(y)}$ (with m_2 neurons). The mappings continued onto u and v. The cost function J forces the correlation between u and v to be maximized. On the right side, the top NN maps from u to a hidden layer $h^{(u)}$ (with l_2 neurons), followed by the output layer x' (with l_1 neurons). The cost function J_1 minimizes the MSE of x' relative to x. The third NN maps from v to a hidden layer $h^{(v)}$ (with m_2 neurons), followed by the output layer y' (with m_1 neurons). The cost function J_2 minimizes the MSE of y' relative to y.

$\text{linmodel}_1_h1_mat$ and $\text{linmode2}__h1_mat$ are the extracted linear modes 1 and 2.

plmode1_m plots the output mode 1, producing two postscript plot files, whereas pltmode1_m produces more compact plots onto one postscript file.

plmode2_m plots the output mode 2, producing two postscript plot files, whereas pltmode2_m produces more compact plots onto one postscript file.

manual_m contains the online manual.

The following files do not in general require modifications by the user:

chooseTestSet_m divides the dataset (xdata and ydata) into a training set and a test set.

chooseTestuv_m divides the nonlinear canonical variates u and v (Fig. 3) into a training set and a test set.

calcmode_m computes the NLCCA mode (or CCA mode). NLCCA uses 3 neural networks (Fig. 3) with 3 cost functions J, J_1 and J_2, and weight vectors W, W_1 and W_2, respectively. The best ensemble member is selected for the forward map $(x, y) \rightarrow (u, v)$, and its (u, v) become the input to the two inverse maps.

costfn_m computes the cost function J for the forward map $(x, y) \rightarrow (u, v)$.
mapuv.m maps \((x, y) \rightarrow (u, v)\).

costfn1.m computes the costfn \(J_1\) for the inverse map: \(u \rightarrow x'\) (i.e. from \(u\) to \(x\)).

invmapx.m computes the inverse map: \(u \rightarrow x'\).

costfn2.m computes the costfn \(J_2\) for the inverse map: \(v \rightarrow y'\) (i.e. from \(v\) to \(y\)).

invmapy.m computes the inverse map: \(v \rightarrow y'\).

nondimen.m and dimen.m are used for scaling and descaling the data. The input are nondimensionalized according to the scaling option selected, NLCCA is then performed, and the final results are again dimensionalized.

extracalc.m (optional) can be used for projecting new data onto an NLCCA mode.

4.2 Parameters stored in \texttt{param.m} for NLCCA

Parameters are classified into 3 categories, ‘*’ means user normally has to change the value to fit the problem. ‘+’ means user may want to change the value, and ‘−’ means user rarely has to change the value.

+ \(i\text{print} = 0, 1, 2\) or 3 increases the amount of printout.

 \textit{Note:} Printout summary from an output file (e.g. \texttt{out1}) can be extracted by the unix \texttt{grep} command: \texttt{grep \# out1}

− \(i\text{save} = 1\) only saves the best solution in a .mat file, plus \(W\) and \(\text{MSEx}\) of all ensemble members. \(i\text{save} = 2\) saves all ensemble member solutions (more memory required).

− \(\text{linear} = 0\) means NLCCA; \(\text{linear} = 1\) essentially reduces to CCA. [When \(\text{linear} = 1\), it is recommended that the number of hidden neurons in the encoding layers be set to 1, and \texttt{testfrac} be set to 0].

* \(\text{nensemble}\) is the number of members in the ensemble. (Many ensemble members may converge to shallow local minima and hence wasted).

− \(\text{testfrac} = 0\) does not reserve a portion of the data for testing or validation. All data used for training. Best if data is rather clean. \(\text{testfrac} > 0\) (usually between 0.15 to 0.25), then a fraction of the data record will be randomly selected as test data. Training is stopped if the MSE increases in the test data by more than the threshold given by \texttt{earlystop_tol}.

+ \(\text{segmentlength} = 1\) if autocorrelation of the data is not of concern; otherwise the user may want to set \texttt{segmentlength} to about the autocorrelation time scale.

+ \(\text{overfit_tol}\) is the tolerance for overfitting, should be 0 (recommended) or a small positive number (0.1 or less). Only ensemble members having correlation of \(u,v\) over the test set no worse than the (correlation over the training set)*\((1−\text{overfit_tol})\), or MSE over the test set no worse than \((\text{MSE over the training set})*\((1+\text{overfit_tol})\) are accepted, and the selected solution is the member with the highest correlation and lowest MSE over all the data. When \(\text{overfit_tol} = 0\), program automatically chooses an overfit tolerance level \texttt{overfit_tol2} to decide which ensemble members to accept.
earlystop_tol should be around 0.05 to 0.15. (0.1 recommended). This is the ‘early stopping’ method. Best if data is noisy, i.e. overtraining to fit the noise in the data is to be prevented.

* scaling controls scaling of the x and y variables before performing NLCCA. scaling can be specified as a 2-element vector [scaling(1), scaling(2)], or simply as a scalar (then both elements of the vector will take on the same scalar value).
 scaling(1) = −1, no scaling (not recommended unless variables are of order 1).
 scaling(1) = 0, scales all x_i variables by removing the mean and dividing by the standard deviation of each variable. [This could exaggerate the importance of the variables with small standard deviations, leading to strange results].
 scaling(1) = 1, scales all x_i variables by removing the mean and dividing by the standard deviation of the 1st x variable. (Similarly for 2, 3, ...)

Note: When the x variables are the principal components of a dataset and the 1st variable is from the leading mode, scaling(1) = 1 is strongly preferred. [If scaling = 0, the importance of the higher PC modes can be greatly exaggerated by the scaling].

Similarly for scaling(2) which controls the scaling of the y variables.

+ penalty scales the weight penalty term in the cost function. If 0, no penalty used, while 0.1-1 uses a reasonable amount of weight penalty. Increasing the penalty leads to less nonlinearity and less overfitting. Recommend using reasonable amount of penalty. Too large a value for penalty leads to linear solutions and trivial solutions.

+ maxiter scales the maximum number of function iterations allowed during optimization. Start with 1, increase if needed.

+ initRand = a positive integer, initializes the random number generator, used for generating random initial weights.

+ initwt_radius controls the initial random weight radius for the ensemble. Adjust this parameter if having convergence problem. (Suggest starting with initwt_radius = 1). The weight radius is smallest for the first ensemble member, increasing by a factor of 4 when the final ensemble member is reached.

Note: penalty, maxiter and initwt_radius can each be specified as a 3-element row vector, giving the values to be used for the forward mapping network and the two inverse mapping networks separately. (If given as a scalar, then all 3 networks use the same value.) (e.g. penalty = [1.0 0.2 0.1]).

Input dimensions of the networks:

* l1 is the number of input x variables.

* m1 is the number of input y variables.

* l2 is the number of hidden neurons in the first hidden layer after the input x variables.

* m2 is the number of hidden neurons in the first hidden layer after the input y variables. For nonlinear solutions, both l2 and m2 need to be at least 2.

Note: The total number of free (weight and bias) parameters is $2(l1 \times l2 + m1 \times m2) + 4(l2 + m2) + l1 + m1 + 2$. In general this number should be less than the number of samples in the dataset. If this is not the case, principal component analysis may be needed to pre-filter the datasets, so only the leading principal components are used as input to NLCCA.
Note that in version 2.3, the actual calculation follows Hsieh (2004), whereas version 2.2 follows Hsieh (2001b), hence some very minor differences.

4.3 Variables in the codes for NLCCA

The reader can skip this subsection if he/she does not intend to modify the basic code.

Global variables are given by:

```plaintext
global iprint isave linear nensemble testfrac segmentlength ...
  overfit_tol earlystop_tol scaling penalty maxiter initRand ...
  initwt_radius options n l1 m1 l2 m2 iter xmean xstd ymean ystd...
  ntrain xtrain ytrain utrain vtrain xitrain yitrain ...
  ntest xtest ytest vtest xittest yittest corruv MSEx MSEy ...
  ens_accept ens_accept1 ens_accept2 ens_corruv ens_MSEx ens_MSEy ...
  ens_W ens_W1 ens_W2 ens_utrain ens_vtrain ens_xitrain ens_yitrain ...
  ens_utest ens_vtest ens_xittest ens_yittest numparam AIC AICc BIC debug
```

If you add or remove variables from this *global* list, it is CRITICAL that the same changes are made on ALL of the following files: nlcca1.m, nlcca2.m, param.m, calcmode.m, costfn.m, mapuv.m, costfn1.m, invmapx.m, costfn2.m, invmapy.m, extracalc.m.

n is the number of samples [automatically determined from *xdata* and *ydata* (assumed to have equal number of samples) by the function *chooseTestSet*].

xdata is an $l_1 \times n$ data matrix, while *ydata* is an $m_1 \times n$ data matrix.

(A common error is to input an $n \times l_1$ data matrix for *xdata*, or an $n \times m_1$ matrix for *ydata*, which leads MATLAB to complain about inconsistent matrix dimensions).

If *xdata* and *ydata* contain time series data, it is useful to record the measurement time in the variables *tx* and *ty* respectively (both $1 \times n$ vectors). The variables *tx* and *ty* are not used by NLCCA in the calculations.

iter is the number of function iterations.

xmean and *xstd* are the means and standard deviations of the x_i variables (Similarly, *ymean* and *ystd* are for the y_j variables).

ntrain, *ntest* are the number of samples for training and for testing.

xtrain, *xtest* are the portions of *xdata* used for training and testing, respectively.

ytrain, *ytest* are the portions of *ydata* used for training and testing.

utrain, *utest* are the canonical variate u values during training and testing. Similarly for *vtrain* and *vtest*.

xitrain, *xittest* are the model predicted values for x during training and testing. (Similarly for *yitrain* and *yitest*).

MSEx is the mean squared error of x over all data (training+testing). (Similarly for *MSEy*).

ens_accept has value 1 if the ensemble member for the forward map passed the overfit test, otherwise 0. Similarly, *ens_accept1* and *ens_accept2*, for the 2 inverse maps.
ens_corruv saves the corr(u, v) for all ensemble members. Similarly, ens_MSEx, ens_MSEy, ens_W, ens_W1 and ens_W2 save the MSEx, MSEy and the weights W, W1, W2 for the 3 NNs respectively, for all ensemble members. Similarly for ens_utrain ens_vtrain ensxitrain, ens_yitrain, ens_utest, ens_vtest, ens_xitest and ens_yitest.

When isave = 2, all the ensemble solutions, i.e. ens_utrain ens_vtrain ens_xitrain, ens_yitrain, ens_utest, ens_vtest, ens_xitest and ens_yitest are saved. (This could increase memory usage considerably).

numparam is the number of adjustable model parameters (weights and biases).

AIC is the Akaike Information Criterion, AICc is AIC corrected for small sample size bias. BIC is the Bayesian Information Criterion. (See Burnham and Anderson, 1998). These are no longer computed in version 2.3, as it is not clear that they are accurate enough to be of use in helping to choose the best model architecture (i.e. with the optimal number of hidden neurons). Hence AIC, AICc and BIC are now unused variables.

[debug is an unused variable which can be used for debugging purposes].

5 Hints and trouble-shooting

If the data are not noisy, one can run with the weight penalty parameter(s) set to 0. With noisy data, this will often lead to overfitting, resulting in wiggly or zigzag solutions. Increasing weight penalty reduces the nonlinearity of the solution, resulting in smoother curves. If the penalty is too large, one gets the linear solution, or even the trivial solution where all weights are zero (and all data points get mapped to the same output point).

Increasing the number of hidden neurons allow more complicated nonlinear solutions to be found, but also more chance of overfitting. One should generally follow the principle of parsimony in that the smallest network which can do the job is the one to be favoured.

A common error message from MATLAB is: 'Inner matrix dimensions must agree'. Use the whos command to check the dimensions of your input data matrix xdata (ydata). For instance, it is easy to erroneously put in an $n \times l$ data matrix for xdata in NLPCA, when it should be an $l \times n$ matrix (i.e. the transpose).

Sometimes, the program gives the error that no ensemble member has been accepted as the solution. One can rerun with a bigger ensemble. One can also raise overfit_tol to tolerate more overfitting. The best option may be to increase the weight penalty (and/or reduce the number of hidden neurons) to reduce overfitting, which is usually the cause of having no ensemble members accepted.

Sometimes, one gets the warning message about mean(u^2) or mean(v^2) not close to unity. This means the normalization terms in the cost function were not effective in keeping mean(u^2) or mean(v^2) around unity. This usually occurs when large penalty were used, so the penalty terms dwarfed the normalization term. One can either ignore the warning or scale up the normalization term in the cost function (in invmapx.m for NLPCA, and in mapuv.m for NLCCA).

There is a known bug inside the MATLAB optimization program fminu. Once in a while, it returns a ‘NaN’ (‘not a number’), presumably due to division by zero. Usually this only happens to one of the ensemble members and does not affect the final selected solution from the ensemble. (To check for NaN in unix, use: grep NaN output.file). If the problem affects the final solution, simply rerun with a different value for initRand, which will generate a different set of random initial weights.
For NLCCA, one might find the correlation to be higher than that achieved by CCA, but the MSE to be worse than those in CCA. This means overfitting has occurred in the first network. More penalty can be used in the first network than in the remaining two networks, e.g. penalty = [1.0 0.1 0.2].

Finally, the most serious weakness of these nonlinear methods, namely that the number of hidden neurons and the penalty parameters are chosen somewhat subjectively, can be largely alleviated by using ensembles. The ensemble members can cover a range of values for number of hidden neurons and penalty parameters. One can then choose the best 25-30 ensemble members, and average their solutions to yield the final solution.
References

