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Abstract

A hybrid algorithm combining support vector regression with evolutionary strategy

(SVR-ES) is proposed for predictive models in the environmental sciences. SVR-ES

uses uncorrelated mutation with p step sizes to find the optimal SVR hyper-parameters.

Three environmental forecast datasets used in the WCCI-2006 contest – surface air tem-

perature, precipitation and sulphur dioxide concentration – were tested. We used multiple

linear regression (MLR) as benchmark and a variety of machine learning techniques in-

cluding bootstrap-aggregated ensemble artificial neural network (ANN), SVR-ES, SVR

with hyper-parameters given by the Cherkassky-Ma estimate, the M5 regression tree, and

random forest (RF). We also tested all techniques using stepwise linear regression (SLR)

first to screen out irrelevant predictors. We concluded that SVR-ES is an attractive

approach because it tends to outperform the other techniques and can also be imple-

mented in an almost automatic way. The Cherkassky-Ma estimate is a useful approach

for minimizing the mean absolute error and saving computational time related to the

hyper-parameter search. The ANN and RF are also good options to outperform multiple

linear regression (MLR). Finally, the use of SLR for predictor selection can dramatically

reduce computational time and often help to enhance accuracy.
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1. Introduction1

The main idea of machine learning is that computer algorithms are capable of auto-2

matically distilling knowledge from data. From this knowledge they can construct models3

capable of making predictions from novel data in the future. However, environmental4

modeling problems are typically very noisy (Cawley et al., 2007), hence it is not easy to5

build successful predictive models.6

Due to data modeling complexity, even for a particular machine learning method,7

there is often more than one way to build the model (Zhang, 2007). To build a successful8

predictive model, the correct adjustment of the model hyper-parameters is necessary. For9

example, in artificial neural network (ANN) models, the number of hidden processing10

units, the choice of activation functions and the regularization parameter all need to be11

specified (Haykin, 1998; Hsieh, 2009).12

Similarly, in support vector machines (SVM) for regression (SVR), typically two or13

three hyper-parameters have to be tuned, such as the cost of constraint violation (C), the14

insensitive-loss (ε) and, if the Gaussian function is used as the kernel function, the width15

of the Gaussian (γ). In theory, the establishment of these hyper-parameters requires an16

optimal search in full state space.17

Much effort has been spent on improving the efficiency of the SVR hyper-parameter18

search (Cherkassky and Ma, 2004; Friedrichs and Igel, 2005; Fan et al., 2005; Huang19

and Wang, 2006; Lin et al., 2008). The most common approach is the simple grid20

search (Fan et al., 2005; Ortiz-Garćıa et al., 2009; Pino-Mej́ıas et al., 2010; Zeng et al.,21

2011), an exhaustive approach that is computationally expensive. Furthermore, the22

hyper-parameters are varied by fixed step-sizes through a wide range of values, limiting23

the search to discrete values.24

Some of the most promising approaches in tuning the SVM hyper-parameters are25

based on evolutionary algorithms (EA), e.g. genetic algorithms (GA) (Pai and Hong,26

2005; Huang and Wang, 2006; Tripathi et al., 2006), particle swarm optimization (PSO)27

(Lin et al., 2008), and evolutionary strategies (ES) (Friedrichs and Igel, 2005). However,28

these approaches need a set of adjustable parameters called EA parameters (Smit and29

Eiben, 2009) and typically there are more EA parameters to adjust than the number30

of hyper-parameters. For example, GA has population size, mutation rate, crossover31
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rate, number of generations, etc., and PSO has population size, acceleration coefficients,32

inertia weight, number of generations, etc. Kramer et al. (2007) showed that the choice33

of the EA parameters has a decisive impact in the final results and can undervalue the34

algorithm performance. In other words, to use a GA it is necessary to adjust at least four35

parameters, which is more than the three SVR hyper-parameters when using a Gaussian36

kernel.37

Another important issue is the data quality upon which machine learning meth-38

ods operate. Indeed, machine learning algorithms may produce less accurate and less39

understandable results if the data are inadequate or contain extraneous and irrelevant40

information (Hall and Smith, 1996). It is also possible to make the modeling process less41

time consuming and sometimes more accurate by removing predictors that are irrelevant42

or redundant with respect to the task to be learned.43

In this paper, our main goals are: (i) reduce the number of hyper-parameters which44

require estimation; (ii) use an accurate initialization of the hyper-parameter search; and45

(iii) discard irrelevant and redundant predictors. We propose a hybrid algorithm called46

SVR-ES which uses a simple evolutionary strategy called “uncorrelated mutation with p47

step sizes” (Eiben and Smith, 2003) to find the optimal SVR hyper-parameters. We also48

combine the SVR-ES with stepwise linear regression (SLR) (Draper and Smith, 1998) to49

screen out irrelevant predictors.50

Three environmental forecast problems used in the WCCI-2006 contest – surface air51

temperature (TEMP), precipitation (PRECIP) and sulphur dioxide concentration (SO2)52

– are tested (Cawley et al., 2007). These three datasets contain different amounts of non-53

linearity and noise. Several other machine learning techniques successfully used in the54

environmental forecast problems are considered, including bootstrap-aggregated ensem-55

ble ANN (Cannon and Lord, 2000; Krasnopolsky, 2007), SVR using the Cherkassky-Ma56

hyper-parameter estimates (Cherkassky and Ma, 2004), the M5 regression tree (Quinlan,57

1992; Solomatine and Xue, 2004; Haupt et al., 2009) and random forest (RF) (Breiman,58

2001; Pino-Mej́ıas et al., 2010). We also use SLR with these techniques to prescreen and59

reduce the number of predictors.60

Section 2 describes the data sets used in our study. The forecasting methods are61

presented in Sections 3 and 4. Results and discussion of the experiments are given in62
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Section 5, followed by summary and conclusion in Section 6.63

2. Data Description64

Environmental data normally contain properties that are difficult to model by com-65

mon regression techniques. For example, response variables may be strictly non-negative,66

highly skewed, non-Gaussian distributed and heteroscedastic (Cawley et al., 2007). Some67

examples are the modeling of SO2 air pollution (Kurt et al., 2008) or statistical down-68

scaling of temperature and precipitation (Schoof and Pryor, 2001).69

We used as benchmark three datasets which were originally used at the WCCI-200670

Predictive Uncertainty in Environmental Modeling Challenge. These benchmarks, char-71

acterized by a non-Gaussian, heteroscedastic variance structure (Cawley et al., 2007),72

are freely available from the challenge website (http://theoval.cmp.uea.ac.uk/~gcc/73

competition/).74

Predicting precipitation accurately is still one of the most difficult tasks in meteorol-75

ogy (Fritsch et al., 1998; Kuligowski, 1998; Strangeways, 2007). Factors responsible for76

the difficulty in predicting precipitation are e.g. the chaotic nature of the atmosphere and77

the complexity of the processes involved in its creation (Fritsch et al., 1998), seasonal vari-78

ations (Wallace and Hobbs, 2006), non-stationary statistical behavior (Von Storch and79

Zwiers, 2001), difficulties in precipitation measurements including problems with rain80

gauges, radar and satellites (Strangeways, 2007) and the limited temporal and spatial81

scales of global circulation models (GCMs) (Kuligowski, 1998).82

To forecast precipitation at regional scale, GCM outputs cannot be used directly due83

to coarse spatial resolution. For example, GCMs do not provide information on the84

spatial structure of temperature and precipitation in areas of complex topography and85

land use distribution. To use the output of a GCM for this task, statistical downscaling86

models are often used (Hashmi et al., 2009).87

In the PRECIP benchmark the input variables are large-scale circulation information,88

such as might be obtained from a GCM, and the target is daily precipitation data recorded89

at Newton Rigg, a relatively wet station located in the northwest of the United Kingdom.90

This benchmark is an example where the response variable is skewed to the right. The91

PRECIP dataset contains 106 predictors and 10,546 daily patterns.92
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With similar large-scale circulation features to those used for the PRECIP benchmark,93

the TEMP benchmark is another statistical downscaling problem, in this case one in94

which the target is the more normally distributed daily maximum temperature at the95

Writtle station in the southeast of the United Kingdom. The TEMP dataset has 10696

predictors and 10,675 daily patterns.97

Air pollution is a major environmental problem in cities. Local emissions and topo-98

graphic factors, allied with meteorological conditions such as high atmospheric pressure99

and temperature inversions, cause poor dispersion of atmospheric pollutants due the100

stagnant conditions. Human health problems (both short term and chronic problems)101

can occur when pollutant concentrations exceed the allowable limits. Therefore predict-102

ing the concentration of pollutants such as sulfur dioxide (SO2) is crucial to providing103

proper actions and control strategies in extreme situations (Kurt et al., 2008).104

The target of the SO2 dataset is the SO2 concentration in urban Belfast. In order to105

forecast the SO2 concentration twenty-four hours in advance, meteorological conditions106

and current SO2 levels were used as input variables. Similar to PRECIP, SO2 is a right107

skewed variable with a heavy tail. The SO2 dataset has 27 predictors and 22,956 hourly108

patterns, more than double the number of patterns in PRECIP and TEMP.109

Irrelevant predictors can unnecessarily increase the time needed for learning a suf-110

ficiently accurate forecast model and in many cases also increase the size of the search111

space. To reduce the number of predictor variables, we use the well-known prescreening112

technique of SLR (Hocking, 1976; Venables and Ripley, 2002; Hastie et al., 2009).113

3. Support Vector Regression114

Support vector machines (SVM) have been widely used in the environmental sciences115

for classification and regression problems (Pino-Mej́ıas et al., 2010; Tripathi et al., 2006).116

SVM were originally designed for nonlinear classification problems, then extended to117

nonlinear regression problems (SVR) (Muller et al., 1997).118

Suppose we are given the training data {(x1, y1), . . . , (xn, yn)} with n patterns. After119

mapping the input pattern x into a higher dimensional feature space using a nonlinear120

mapping function Φ, the nonlinear regression problem between x and y can be converted121
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to a linear regression problem between Φ(x) and y, i.e.122

f(x;w) = 〈w,Φ(x)〉+ b, (1)

where 〈, 〉 denotes the inner product, and w and b are the regression coefficients obtained123

by minimizing the error between f and the observed values of y. Instead of the commonly124

used mean squared error (MSE) norm, SVR uses the ε-insensitive error norm to measure125

the error between f and y,126

|f(x;w)− y|ε =

 0, if |f(x;w)− y| < ε

|f(x;w)− y| − ε, otherwise,
(2)

i.e., small errors (|f − y| < ε) are ignored, whereas for large errors, the error norm127

approximates the mean absolute error (MAE). A key issue is that an error norm based128

on MAE is more robust to outliers in the data than the MSE. Using pattern data (xi,129

yi), the w and b coefficients are estimated by minimizing the objective function:130

J =
C

n

n∑
i=1

|f(xi,w)− yi|ε +
1

2
‖w‖2 , (3)

where C (which controls the regularization) and ε are the hyper-parameters.131

The global minimum solution to the linear regression problem (1) can be achieved132

without iterative nonlinear optimization, hence local minima in the objective function133

are not a problem. However, the linear regression problem can be very expensive or im-134

possible to compute without truncating infinite dimensional vectors. This occurs because135

Φ(x) may be a very high (or even infinite) dimensional vector. To counter this drawback136

a kernel trick is used in which the inner product 〈Φ(x),Φ(x′)〉 in the solution algorithm137

is replaced by a kernel function K(x,x′), which does not involve the difficult handling138

of Φ(x). The minimization of (3) uses the method of Lagrange multipliers, and the final139

regression estimate can be expressed in the form (Bishop, 2006):140

f(x) =
∑
i

K(x,xi) + b, (4)

where the summation is only over a subset of the given data xi called the support vectors.141

3.1. Evolutionary Strategies142

Evolutionary algorithms (EA) mimic nature’s way of evolving successful organisms143

(individuals) (Haupt et al., 2009). An Evolutionary Strategy (ES) is a particular class144
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of EA that is normally used for continuous parameter optimization. An attractive point145

of the ES is the self-adaptation of some strategy parameters. The strategy parameters146

are the set of adjustable parameters used by the algorithm. Self-adaptivity means that147

some EA parameters are varied during a run in a specific manner: the parameters are148

included in the chromosomes and co-evolve with the solutions (Eiben and Smith, 2003),149

i.e., the algorithm is capable of adapting itself autonomously.150

3.1.1. Mutation and Self-adaptation151

Mutation is the name given to a genetic operation which uses only one parent and152

creates one offspring by applying some type of randomized change to the representation.153

Let G be a chromosome defined by,154

G = (g1, g2, . . . , gp), (5)

where gi (i = 1, 2, . . . , p) are the solution parameters. Mutations are realized by adding155

some ∆gi to each gi, where ∆gi are values from a Gaussian distribution N(0, σ), with156

zero mean and standard deviation σ, i.e.,157

g′i = gi +N(0, σ), i = 1, 2, . . . , p. (6)

The self-adaptation consists of including the step size σ in the chromosomes so it also158

undergoes variation and selection, i.e. mutations are realized by replacing (g1, g2, . . . , gp;σ)159

by (g′1, g
′
2, . . . , g

′
p;σ
′), where σ′ is the mutated value of σ, also called the mutation step160

size.161

3.1.2. Uncorrelated Mutation with p Step Sizes162

An attractive feature of the “mutation with p step sizes” method is its ability to treat163

each dimension differently, i.e., using different step sizes for different dimensions. The164

chromosome given in (5) is extended to p step sizes, resulting in165

G = (g1, g2, . . . , gp;σ1, σ2, . . . , σp), (7)

and the mutation rules are given by:166

σ′i = σie
τ ′N(0,1)+τNi(0,1), (8)
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167

g′i = gi + σiNi(0, 1), i = 1, 2, . . . , p, (9)

where τ ′ ∝ 1/
√
2p, and τ ∝ 1/

√
2
√
p. The common base mutation eτ

′N(0,1) allows an168

overall change of the mutability. The flexibility to use different mutation strategies in169

different directions is provided by the coordinate-specific eτNi(0,1) (Eiben and Smith,170

2003).171

3.2. Hyper-parameter Optimization and SVR-ES172

The performance of an SVR model is highly dependent on the choice of the kernel173

function and the hyper-parameters (Hastie et al., 2009; Hsieh, 2009). The use of a174

suitable nonlinear kernel function in SVR allows it to be fully nonlinear, while the use175

of a linear kernel function restricts SVR to a linear model. The SVR with the linear176

kernel is a linear regression model but with the robust ε-insensitive error norm instead177

of the non-robust MSE norm as used in multiple linear regression (MLR). In this study,178

we used the radial basis function (RBF) kernel (also called the Gaussian kernel) given by179

K(x,xi) = exp[−‖x− xi‖2/(2σ2
K)], with the hyper-parameter γ = 1/(2σ2

K) controlling180

the width σK of the Gaussian function.181

Cherkassky and Ma (2004) proposed how to estimate values for the hyper-parameters182

C and ε in SVR. The estimated regularization parameter C is max (|y + 3σy|, |y − 3σy|)183

where y and σy are the mean and the standard deviation of the y values of the training184

data; and ε ∼ 3 σN

√
lnn/n, where n is the size of data set and σN is the standard185

deviation of the noise. The noise level is estimated by using the k-nearest-neighbors186

regression method, where ŷ, the value of a new point, is estimated from the average of187

the k nearest points (Hastie et al., 2009). Hence the estimated noise is:188

σ̂2
N =

n1/5k

n(n1/5k − 1)

n∑
m=1

(ym − ŷm)2, (10)

where ym and ŷm are the observed and estimated output values, respectively, for case m.189

Cherkassky and Ma (2004) suggested that with d predictor variables the RBF width190

σK should behave as σd
K ∼ (0.1− 0.5). Hence, no precise estimate of γ was given. From191

now on we will call the SVR with the Cherkassky-Ma hyper-parameters just SVR for192

brevity.193
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In SVR-ES, the ES is initialized from a starting solution h containing the Cherkassky-194

Ma hyper-parameters. The local search algorithm searches the candidate solutions in195

N(h), a set of neighbors, for an h′ that has a better fitness function than h. Basically,196

the fitness function assigns a fitness value to each point in the parameter space (adaptive197

landscape (Eiben and Schoenauer, 2002)), where this value can be seen as a measure198

of how good a solution, represented by that point in the landscape, is to the given199

problem (Hordijk, 1996). In this way, if a solution exists (i.e. has better fitness function)200

it is accepted as the new incumbent solution, and the search proceeds by examining201

the candidate solution in N(h′). In our particular case, we minimize the MSE (f(h) =202

(MSE)−1). The necessary steps for implementing the SVR-ES algorithm are shown in203

Figure 1.204

Eventually, this process will lead to the identification of a local optimum (Eiben and205

Smith, 2003). However, as this was done for a single individual instead of a popula-206

tion (which is necessary for a global search), this approach is highly dependent on its207

initial condition (initial individual). Assuming that the initial hyper-parameters from208

Cherkassky-Ma are reasonable, our local search with ES is adequate.209

In particular, the use of SVR-ES is attractive because it can be implemented in an210

almost automatic way, uses variable steps to find the optimal hyper-parameters, is self-211

adaptive, and, by using τ ′ = 1/
√
2p and τ = 1/

√
2
√
p, the only EA algorithm parameter212

that remains to be adjusted is the number of iterations.213

4. Artificial Neural Network and Regression Trees214

For comparison with the SVR and SVR-ES models, an artificial neural network215

(ANN) and two regression tree algorithms are also applied to the WCCI-2006 datasets.216

An ANN is a biologically inspired mathematical model which is composed of a large217

number of highly interconnected perceptrons divided in layers (input, hidden, output),218

but working in union to solve a problem. Training of the ANN model involves adjusting219

the parameters iteratively so the MSE between the model output ŷ and target y is mini-220

mized. Overfitting is a known problem with ANN. If p, the number of model parameters,221

is too large, the ANN may overfit the data, producing a spuriously good fit that does222

not lead to better predictions for new cases. This motivates the use of model comparison223

9



criteria, such as the corrected Akaike information criterion (AICc), which penalizes the224

MSE as a function p. The AICc, a bias-corrected version of the original AIC, is given by225

AICc = n ln (MSE) + 2p+ 2(p+ 1)(p+ 2)/(n− p− 2), (11)

where n is the number of effective observations (Faraway and Chatfield, 1998). Models226

with increasing numbers of hidden neurons nh are trained and the model that minimizes227

AICc is chosen as the optimummodel. The ANN architecture and training algorithm used228

in this study are based on Cannon and Lord (2000), with one hidden layer, early stopping229

to avoid overfitting, an ensemble (or committee) of ANNmodels to deal with local minima230

in the objective function, and with bootstrap aggregation (bagging) (Breiman, 1996).231

Conceptually simple yet powerful, regression tree analysis, applicable to data sets with232

both a large number of patterns and a large number of variables, is extremely resistant233

to outliers. Among the decision trees used in machine learning, the classification and234

regression tree (CART) model, first introduced by Breiman et al. (1984), is the most235

commonly used. A random forest (RF) (Breiman, 2001) is a bootstrap ensemble of many236

decision trees (CART). Each tree is grown over a bootstrap sample from the training data237

set using a randomly selected subset of the available predictors at each decision branch.238

Like CART, M5 builds a tree-based model, however the tree constructed by M5 can239

have multivariate linear models at its leaves - the model trees are thus analogous to240

piecewise linear functions. The advantage of M5 over CART is that M5 model trees are241

generally much smaller and more accurate in some problem domains (Quinlan, 1992).242

5. Experimental Results243

To demonstrate the practical use of the forecasting methods for environmental prob-244

lems, experiments were performed on the datasets outlined in Section 2. In order to245

compare linear versus non-linear approaches, we also performed experiments with MLR.246

Linear models are simple, fast, and often provide adequate and interpretable descriptions247

of how the inputs affect the output. In particular for prediction purposes they can some-248

times outperform fancier nonlinear models (Hastie et al., 2009). All the forecast models249

can be built using the free R software environment for statistical computing (R Develop-250

ment Core Team, 2011). For RF we used the R package randomForest (Liaw and Wiener,251
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2002). For SVR we used the R package e1071 (Dimitriadou et al., 2011). We developed252

the SVR-ES using the R package e1071 and the R native libraries; SVR-ES code is freely253

available from the project website: http://forai.r-forge.r-project.org/. For M5254

we used the package RWeka (Hornik et al., 2009). ANN uses the monmlp package. For255

MLR and SLR we used the package stats.256

Data were standardized (zero mean and unit variance) and divided into a training set257

(75% of the data) and an independent test set (last 25% of the data) which is used to258

test the trained model. For the SVR we used a 5-fold cross validation within the training259

set to train and validate the model. For SVR-ES we subdivided the training set into two260

parts leaving the final 20% to validate the model. The RF and ANN perform their own261

split-sample validation via the out-of-bootstrap samples in the bootstrap aggregation.262

The ANN setup was as follows: the range of initial random weights was between263

[−0.5 : 0.5], 30 ensemble members were used for bagging, and 5000 was used as the264

maximum number of iterations. For RF, we used 500 as the number of generated trees265

and 5, the default value, as the minimum size of terminal nodes. For M5 we used the266

default values of the package RWeka. For the SRV-ES, C and ε were initialized by the267

Cherkassky-Ma guidelines and γ by 0.001.268

For SVR, the C and ε values used were from Cherkassky-Ma, but for γ we did a grid269

search using the range suggested by Cherkassky-Ma (see section 3.2) and the extended270

range [2−10, 24] suggested by Lin and Lin (2003). Table 1 shows that using γ from271

Cherkassky-Ma yielded poorer results than those from Lin and Lin. Henceforth, SVR272

will refer to the model using a γ search following Lin and Lin.273

In order to compute the relative accuracy between the MLR and the non-linear meth-274

ods we calculated the skill score (SS) (Hsieh, 2009) of the MAE and MSE. The SS is275

defined by:276

SS =
A−Aref

Aperfect −Aref
, (12)

where A is a particular measure of accuracy, Aperfect is the value of A for a set of perfect277

forecasts (in our case MAE and MSE equal to zero), and Aref is the value of A computed278

over the set of reference forecasts (in our case the MAE or MSE value of the MLR model279

using all predictors). Positives SS means better performance than the reference model280

and negative values, worse performance.281
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According to the skill scores for PRECIP, the SVR (with the extended γ range)282

achieved the best MAE results (Figure 2) and the SVR-ES the best MSE results (Fig-283

ure 3). That the two SVR methods perform better than the other methods relative to284

the MAE could be expected due to the ε-insensitive error norm of the SVR being more285

similar to the MAE. The SLR reduced the number of predictors from 106 to 59, cutting286

approximately 45% of the predictors. Basically, the SLR did not have an impact on the287

MLR accuracy. For the ANN, the MAE SS is also essentially the same with and without288

prescreening by SLR. However, an improvement is noted in the MSE when the SLR was289

applied. The combination of SLR with M5 and RF tended to diminish the skill. As290

M5 and RF do their own variable selection, it makes sense that SLR is not helpful. On291

other hand, SVR-ES had a minor improvement with fewer predictors. All the non-linear292

methods had better MAE results than the MLR (Figure 2). However the M5 had poor293

MSE performance when compared with the MLR (around 10% worse) (Figure 3). The294

SVR-ES had good results when compared with MLR, with skill scores exceeding 20% in295

MAE and over 10% in MSE.296

Figures 4 and 5 show that for TEMP the SVR-ES achieved the best results in both297

MAE and MSE. Excluding M5, all the non-linear methods again had better MAE SS298

than the MLR. The SLR reduced the 106 predictors to 60, cutting approximately 44%299

of the predictors. Again the strongest improvement was ANN combined with SLR. SLR300

was also beneficial to SVR-ES, SVR, and RF but, as in PRECIP, detrimental to M5.301

For the SO2 dataset, Figures 6 and 7 show RF as the best performer. However, SVR-302

ES kept its good performance in both MSE and MAE. Figure 6 shows again that MLR is303

the worst in terms of MAE performance. SVR-ES has MAE SS performance around 10%304

better than the MLR, and RF and SVR around 15% better. SLR reduced the number of305

predictors for SO2 from 27 to 21, cutting approximately 23% of the predictors. Although306

SLR did not have major impact on the forecast accuracy for the SO2 dataset, the results307

are still desirable since the reduction of predictors reduces computing time.308

To clarify why SVR performs better than SVR-ES in Figures 2 and 6, we performed309

a small experiment on the PRECIP and SO2 datasets (with all predictors used) by310

varying the fitness function in ES. Instead of maximizing only (MSE)−1, we also tested311

using (MAE)−1 as fitness function, and calculated the skill scores using the MLR values312
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as reference. Figure 8 compares the skill score of MAE and MSE with f1= (MSE)−1 as313

fitness function, and f2 = (MAE)−1 as fitness function.314

For the PRECIP dataset (Figure 8a), with f1 as fitness function, SVR-ES has worse315

MAE SS than SVR, but the two are comparable when f2 is used instead. However, for316

the MSE SS, SVR-ES did better than SVR, regardless of whether f1 or f2 was used.317

Similarly, for the SO2 dataset (Figure 8b), SVR-ES with f1 has worse MAE SS than318

SVR, but slightly better MAE SS than SVR with f2. For the MSE SS, SVR-ES (with319

either f1 or f2) did better than SVR, thought the difference between f1 and f2 is more320

pronounced than in the PRECIP dataset. More guidelines on why an error measure can321

be minimized while a different error measure can remain unchanged or diminish can be322

found at Jachner et al. (2007) and Lima et al. (2010). In general, it is not possible for323

a single error measure to perform best on all criteria (e.g. cost, reliability, sensitivity,324

resistance to outliers, relationship to decision making, etc.) (Armstrong and Collopy,325

1992), hence the choice of the fitness function is dependent on the desired goal.326

The heart of the learning problem is generalization (Witten et al., 2011), i.e., whether327

the methods can retain satisfactory performance on new datasets. Based on the previous328

results (Figures 3, 4 and 5), M5 is not recommended. On the other hand, ANN, SVR,329

SVR-ES, and RF have better performance than the MLR when considering both MAE330

and MSE over the three tested datasets.331

It is difficult to evaluate the computing time of two methods under every parameter332

setting because different values of the SVR hyper-parameters affect the training time (Fan333

et al., 2005). To illustrate the time reduction provided by SLR, a small experiment334

using the PRECIP dataset was performed. Varying the size of the training dataset, we335

measured the cpu time used to train the SVR model (with γ fixed at 0.001) and forecast336

the test set, using (i) all predictors and (ii) only the predictors selected by SLR. For 1000,337

3000, 5000 and 7000 points in the training set, using all predictors required cpu times338

of 10, 135, 371 and 727 s, respectively, while using only the predictors selected by SLR339

required 5, 60, 212 and 469 s, respectively, thus confirming that screening of predictors340

by SLR saves computing time.341

To provide some guidelines and explanation for SVR results, Figures 9 and 10 show342

changes related to the range of the γ value, with γ varying between [2−10, 24]. The343
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MAE and MSE values were rescaled to range between [0, 1] in order to compare the344

sensitivity between the different datasets. First, as discussed in Cherkassky-Ma, indeed345

there is dependency related to the γ values and the dataset dimensionality. However, this346

dependency is not present over the full tested range. For example, in Figures 9 and 10,347

the solid lines with triangles correspond to the full dimensionality (106 predictors) and348

the dashed lines with triangles correspond to a reduced dimensionality (60 predictors)349

of the TEMP dataset; within the range of [2−10, 2−6] there is no difference between350

the dimensionality and the values of MAE/MSE. The same behavior occurs in the SO2351

dataset over the range of [2−10, 2−4] (solid and dashed lines with x symbols). Another352

interesting point is that the best γ values are independent of the dimensionality, i.e.,353

solid lines and dashed lines converge to the same minimal point. This means that the354

dependency of γ is not totally related to the dataset dimensionality but with the dataset355

characteristics, as can be seen in the range of [2−10, 2−6]. However, in this range, the356

MAE and MSE results for the PRECIP dataset had different optimal γ values, though357

this difference is only one unit (log2γ) as the grid search used discrete steps of this step358

size.359

Finally, to show the differences between various approaches to setting SVR hyper-360

parameters, we performed an experiment on the PRECIP dataset again, using all pre-361

dictors and the same test set as before, but only the last 500 points of the training set.362

We tested the modified GA proposed by Leung et al. (2003) with different parameters363

settings (GA1, GA2 and GA3), SVR using the procedure recommended by Cherkassky364

and Ma (2004) but with the extended range γ = [2−10, 24] as suggested by Lin and Lin365

(2003), SVR-ES with 200 generations (which is less than the 500 used in GA1 and GA2)366

and SVR using 3-D grid search with the range of the three hyper-parameters recom-367

mended by Fan et al. (2005). For GA1, we used 500 as the number of generations, 0.1368

as the mutation rate, 0.9 as the crossover weight and 50 as the size of the population369

(which was initialized randomly). For GA2, the corresponding values were 500, 0.2, 0.8370

and 20, respectively, while for GA3, the values were 200, 0.3, 0.5 and 100, respectively.371

The reference model was again the MLR (trained on the 500 points).372

SVR-ES and SVR had the best results according to the MSE and MAE SS (Figure 11).373

As shown by Kramer et al. (2007), changing the GA parameters can improve/worsen the374
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final results. Similar to Figure 2, SVR had better performance in the MAE SS than375

SVR-ES, but this can be reversed by using (MAE)−1 as the fitness function (Figure 8).376

The 3-D grid search had similar performance as GA1. In terms of computing efforts,377

SVR required 15 evaluations (for the 15 different γ values used in the search), SVR-378

ES 200 evaluations, 3-D grid search about 1500, and the three GA models 1400–3500379

evaluations.380

6. Summary and Conclusion381

In summary, we used three environmental datasets to test five non-linear forecast-382

ing methods (four well-known and one that we proposed). Except for M5, the nonlin-383

ear methods (ANN, SVR, SVR-ES and RF) generally outperformed the linear method384

(MLR). Prescreening of predictors by SLR is generally beneficial for the nonlinear models385

(except for M5), as it reduces the computing time and may increase the forecast skills386

(especially for ANN). As explained in Witten et al. (2011), there is no universal best387

learning method. SVR-ES had very good accuracy when the datasets were TEMP and388

PRECIP, while RF had the best accuracy when the dataset was SO2. During pollution389

events, the SO2 concentration spikes much more dramatically than the high values ob-390

served in the temperature and precipitation data, hence the architecture of RF may be391

particularly suited for predicting variables with a heavy-tailed distribution.392

The best overall method tends to be SVR-ES. SVR (with the Cherkassky-Ma esti-393

mates for C and ε and an extended grid search in γ) worked well in terms of the MAE394

skill score, and provided satisfactory performance in terms of the MSE. It used a rela-395

tively modest amount of computing time for the hyper-parameter search. When using396

the fitness function of (MSE)−1 in the ES, SVR-ES may sometimes underperform SVR397

in terms of the MAE skill score, but changing the fitness function to (MAE)−1 appears398

to eliminate this problem.399

As recommended by Eiben and Smith (2003), a common approach is to start with400

simple models; if the results are not of good enough quality, then move to more com-401

plex models. The SVR-ES accuracy can be improved using more complex ES such as402

correlated mutations (Eiben and Smith, 2003) or covariance matrix adaptation evolution403

strategy (CMA-ES) (Friedrichs and Igel, 2005). Multi-processors can also be used in the404
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computation, i.e. given a chromosome G (equation 7), k independent mutations can be405

made among ρ processors (Verhoeven and Aarts, 1995).406

References407

Armstrong, J.S., Collopy, F., 1992. Error measures for generalizing about forecasting methods: Empirical408

comparisons. International Journal of Forecasting 8, 69–80.409

Bishop, C.M., 2006. Pattern Recognition and Machine Learning (Information Science and Statistics).410

Springer-Verlag New York, Inc., Secaucus, NJ, USA.411

Breiman, L., 1996. Bagging predictors. Machine Learning 24, 123–140. 10.1007/BF00058655.412

Breiman, L., 2001. Random forests. Machine Learning 45, 5–32. 10.1023/A:1010933404324.413

Breiman, L., Friedman, J., Olshen, R., Stone, C., 1984. Classification and Regression Trees. Wadsworth414

Inc.415

Cannon, A.J., Lord, E.R., 2000. Forecasting summertime surface-level ozone concentrations in the lower416

fraser valley of british columbia: An ensemble neural network approach. J. Air & Waste Manage 50,417

pp. 322–339.418

Cawley, G.C., Janacek, G.J., Haylock, M.R., Dorling, S.R., 2007. Predictive uncertainty in environmental419

modelling. Neural Networks 20, 537 – 549. Computational Intelligence in Earth and Environmental420

Sciences.421

Cherkassky, V., Ma, Y., 2004. Practical selection of svm parameters and noise estimation for svm422

regression. Neural Netw. 17, 113–126.423

Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., , Weingessel, A., 2011. e1071: Misc Functions of the424

Department of Statistics (e1071), TU Wien. R package version 1.5-26.425

Draper, N.R., Smith, H., 1998. Applied Regression Analysis (Wiley Series in Probability and Statistics).426

Wiley series in probability and mathematical statistics. Applied probability and statistics, John Wiley427

& Sons Inc. 2 sub edition.428

Eiben, A.E., Schoenauer, M., 2002. Evolutionary computing. Information Processing Letters 82, 1–6.429

Eiben, A.E., Smith, J.E., 2003. Introduction to Evolutionary Computing. Natural Computing Series,430

Springer, Berlin.431

Fan, R.E., Chen, P.H., Lin, C.J., 2005. Working set selection using second order information for training432

support vector machines. J. Mach. Learn. Res. 6, 1889–1918.433

Faraway, J., Chatfield, C., 1998. Time series forecasting with neural networks: a comparative study434

using the air line data. Journal of the Royal Statistical Society: Series C (Applied Statistics) 47,435

123–140. 10.1111/1467-9876.00109.436

Friedrichs, F., Igel, C., 2005. Evolutionary tuning of multiple svm parameters. Neurocomputing 64,437

107–117. Trends in Neurocomputing: 12th European Symposium on Artificial Neural Networks 2004.438

Fritsch, J.M., Houze, R.A., Adler, R., Bluestein, H., Bosart, L., Brown, J., Carr, F., Davis, C., Johnson,439

R.H., Junker, N., et al., 1998. Quantitative precipitation forecasting: Report of the eighth prospectus440

16



development team, us weather research program. Bulletin of the American Meteorological Society 79,441

285–299.442

Hall, M., Smith, L., 1996. Practical feature subset selection for machine learning, in: McDonald, C. (Ed.),443

Computer Science ’98 Proceedings of the 21st Australasian Computer Science Conference ACSC’98,444

Springer. pp. 181–191.445

Hashmi, M.Z., Shamseldin, A.Y., Melville, B.W., 2009. Statistical downscaling of precipitation: state-446

of-the-art and application of bayesian multi-model approach for uncertainty assessment. Hydrology447

and Earth System Sciences Discussions 6, 6535–6579.448

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning: Data Mining,449

Inference, and Prediction, Second Edition. Springer Series in Statistics, Springer. 2nd ed. 2009. corr.450

3rd printing 5th printing. edition.451

Haupt, S., Pasini, A., Marzban, C., 2009. Artificial intelligence methods in the environmental sciences.452

Springer.453

Haykin, S., 1998. Neural Networks - A Comprehensive Foundation. Pearson Education. second edition.454

Hocking, R.R., 1976. A biometrics invited paper. the analysis and selection of variables in linear regres-455

sion. Biometrics 32, pp. 1–49.456

Hordijk, W., 1996. A measure of landscapes. Evolutionary Computation 4, 335–360.457

Hornik, K., Buchta, C., Zeileis, A., 2009. Open-source machine learning: R meets Weka. Computational458

Statistics 24, 225–232.459

Hsieh, W.W., 2009. Machine Learning Methods in the Environmental Sciences: Neural Networks and460

Kernels. Cambridge University Press, New York, NY, USA.461

Huang, C.L., Wang, C.J., 2006. A ga-based feature selection and parameters optimization for support462

vector machines. Expert Systems with Applications 31, 231–240.463

Jachner, S., van den Boogaart, K.G., Petzoldt, T., 2007. Statistical methods for the qualitative as-464

sessment of dynamic models with time delay (r package qualv). Journal of Statistical Software 22,465

1–30.466

Kramer, O., Gloger, B., Goebels, A., 2007. An experimental analysis of evolution strategies and particle467

swarm optimizers using design of experiments, in: Proceedings of the 9th annual conference on Genetic468

and evolutionary computation, ACM, New York, NY, USA. pp. 674–681.469

Krasnopolsky, V.M., 2007. Neural network emulations for complex multidimensional geophysical map-470

pings: Applications of neural network techniques to atmospheric and oceanic satellite retrievals and471

numerical modeling. Reviews of Geophysics 45.472

Kuligowski, Robert J., A.P.B., 1998. Localized precipitation forecasts from a numerical weather predic-473

tion model using artificial neural networks. Wea. Forecasting 13, 1194?1204.474

Kurt, A., Gulbagci, B., Karaca, F., Alagha, O., 2008. An online air pollution forecasting system using475

neural networks. Environment International 34, 592–598.476

Leung, F., Lam, H., Ling, S., Tam, P., 2003. Tuning of the structure and parameters of a neural network477

using an improved genetic algorithm. Neural Networks, IEEE Transactions on 12, 79–88.478

Liaw, A., Wiener, M., 2002. Classification and regression by randomforest. R News 2, 18–22.479

17



Lima, A.R., Silva, D.A., Mattos Neto, P.S., Ferreira, T.A., 2010. An experimental study of fitness480

function and time series forecasting using artificial neural networks, in: Proceedings of the 12th481

annual conference companion on Genetic and evolutionary computation, ACM, New York, NY, USA.482

pp. 2015–2018.483

Lin, K.M., Lin, C.J., 2003. A study on reduced support vector machines. Neural Networks, IEEE484

Transactions on 14, 1449 – 1459.485

Lin, S.W., Ying, K.C., Chen, S.C., Lee, Z.J., 2008. Particle swarm optimization for parameter deter-486

mination and feature selection of support vector machines. Expert Systems with Applications 35,487

1817–1824.488

Muller, K., Smola, A., Rtsch, G., Schlkopf, B., Kohlmorgen, J., Vapnik, V., 1997. Predicting time489

series with support vector machines, in: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.D. (Eds.),490

Artificial Neural Networks ICANN’97. Springer Berlin / Heidelberg. volume 1327 of Lecture Notes491

in Computer Science, pp. 999–1004. 10.1007/BFb0020283.492
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Table 1: Comparison of MAE and MSE values from the test set using SVR with the range of γ suggested

by Cherkassky and Ma (2004) and by Lin and Lin (2003) for the PRECIP, TEMP, and SO2 datasets,

using either all predictors (ALL) or predictors selected by SLR.

MAE MSE

Cherkassky-Ma Lin and Lin Cherkassky-Ma Lin and Lin

ALL SLR ALL SLR ALL SLR ALL SLR

PRECIP 0.0534 0.0530 0.0379 0.0380 0.00951 0.00944 0.00572 0.00572

TEMP 0.2520 0.2415 0.0622 0.0618 0.09199 0.08543 0.00642 0.00630

SO2 0.0277 0.0263 0.0244 0.0244 0.00386 0.00371 0.00325 0.00326
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Figure 1: Procedure of the SVR-ES

begin
τ → 0; // τ: Iteration number;

if Screenout irrelevant Predictors = TRUE then
Perform stepwise regression;

end

Initialize G(τ); // G(τ): Chromosome according to Equation (7);

Evaluate f(G(τ)); // f(G(τ)): Fitness function value ;

while not termination condition do
τ → τ + 1 ;

Perform mutation operation according to Eqns. (8) and (9) to generate new chromosome G′ ;

Evaluate f(G′(τ));

if f(G′) > f(G) then

f(G)← f(G′);

end

end

end
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Figure 2: Skill score of MAE for the PRECIP test dataset with all predictors used (dark bar) and with

predictors selected by SLR (light bar). The reference forecast, MLR with all predictors, has simply 0

for the skill score.
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Figure 3: Skill score of MSE for the PRECIP test dataset.
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Figure 4: Skill score of MAE for the TEMP test dataset.
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Figure 5: Skill score of MSE for the TEMP test dataset.
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Figure 6: Skill score of MAE for the SO2 test dataset.
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Figure 7: Skill score of MSE for the SO2 test dataset.
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Figure 8: Skill score of MSE (dark bar) and MAE (light bar) for (a) PRECIP and (b) SO2 test

datasets, where f1 denotes SVR-ES with f1=(MSE)−1 as fitness function and f2 denotes SVR-ES with

f2=(MAE)−1.
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Figure 9: Results of MAE as γ varies between [2−10, 24], for the PRECIP test dataset with all predictors

used (solid line with circles), with predictors selected by SLR (dashed line with circles), for the TEMP

test dataset with all predictors used (solid line with triangles) and with predictors selected by SLR

(dashed line with triangles), for the SO2 test dataset with all predictors used (solid line with x) and

with predictors selected by SLR (dashed line with x).
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Figure 10: Results of MSE as γ varies between [2−10, 24].
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Figure 11: Results of MSE skill score (left side) and MAE skill score (right side) for the PRECIP test

dataset using the last 500 points of the training set and all the predictors to train the models. The

models are respectively: the modified GA proposed by Leung et al. (2003) with different parameters

settings (GA1, GA2 and GA3), SVR with the procedure recommended by Cherkassky and Ma (2004)

and the extended range γ = [2−10, 24] suggested by Lin and Lin (2003), SVR-ES with 200 generations

and 3-D grid search with the hyper-parameters’ range recommended by Fan et al. (2005).
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