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Abstract

To investigate the potential for improving hybrid coupled models (HCM) of the tropical Pacific

by the use of neural network (NN) methods for nonlinear regression, NN was introduced for the

nonlinear parametrization of the subsurface temperature in the Lamont ocean model, and for

the nonlinear estimation of the wind stress anomalies (WSA) from the sea surface temperature

anomalies (SSTA). For comparison, corresponding linear regression (LR) models were also built.

By combining the NN or the LR version of the ocean model and the atmospheric model, four HCMs

resulted. For the coupled model Niño3 SSTA spectrum, using NN in the ocean model produced a

much broader spectrum than using LR, which gave basically a single narrow spectral peak. Using

NN in the atmospheric model in addition to the ocean model further broadened the SSTA spectrum,

yielding a spectrum with two main peaks as observed. Principal component analysis (PCA) and

nonlinear PCA (NLPCA) were used to analyze the SSTA and WSA. By comparing the NLPCA

mode 1 and the PCA mode 1, we found that all the coupled models (including the original Lamont

coupled model) were too linear compared to the observations. However, using NN in the ocean

model and in the atmospheric model was able to alleviate the weak nonlinearity in the coupled

models.
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1 Introduction

Numerous models have been developed to study and to forecast the El Niño-Southern Oscillation

(ENSO) phenomenon, the most important interannual variability in the tropical Pacific coupled

atmosphere-ocean climate system. With complexity lying somewhere between the computationally

demanding coupled general circulation models and simple models, “intermediate” coupled models

(e.g. Zebiak and Cane [1987]) are widely used. Alternatively, ENSO models can be divided into 3

classes: dynamical coupled models, statistical models and hybrid coupled models [Barnston et al.,

1994].

A hybrid coupled model (HCM) consists of a dynamical ocean model coupled to a statistical atmo-

spheric model [Syu et al., 1995; Barnett et al.,1993; Tang and Hsieh, 2001]. The design of the hybrid

coupled model uses the fact that the ocean possesses long-term memory in the coupled atmosphere-

ocean system, while the atmosphere can be treated as a fast adjusting component, so a steady-state

statistical model for the atmosphere can be used. The hybrid coupled model uses an empirical atmo-

spheric component, based on the assumption that for monthly or longer time scales, contemporaneous

correlation between wind stress and oceanic variables such as sea surface temperatures (SST) is asso-

ciated with the atmosphere’s rapid non-local adjustment to the oceanic anomaly patterns throughout

the basin [Syu et al.,1995]. The main merits of a hybrid coupled model are: (1) lower computing cost

than a full coupled general circulation model (GCM) [Blank et al.,1997]; (2) The climate drift problem

is avoided; (3) and comparable, or even better ENSO simulation and prediction skills relative to a

coupled GCM [Palmer and Anderson, 1994].

There are two important aspects affecting the HCM performance: One is the construction of the

empirical atmospheric model, i.e. the method used to estimate the surface wind stress field from a

given ocean state. Most of the empirical atmospheric models used in HCMs so far are linear statistical

models and the methods used include correlation [Latif and Villwork , 1990], linear regression with EOF
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(empirical orthogonal function) modes [Barnett et al., 1993] and SVD (singular value decomposition)

[Syu et al., 1995]. Tang et al. [2001] tried to improve the empirical atmospheric model by a nonlinear

regression approach using artificial neural network (NN) methods. This NN atmosphere was then

coupled to a dynamical ocean model for ENSO prediction [Tang and Hsieh, 2002, 2003]. The other

aspect affecting the HCM performance is the dynamical ocean model, which in this study was adapted

from the ocean component of the Lamont coupled model [Zebiak and Cane, 1987]. The original Lamont

ocean model used a simple parameterization scheme for the subsurface temperature Tsub, which has

been replaced here by an NN nonlinear regression scheme. For comparison, linear regression (LR) was

also tested in place of NN.

Upon coupling the oceanic and atmospheric models, a total of 4 HCMs resulted: (1) The Lamont

ocean model with a nonlinear NN Tsub parameterization coupled to a nonlinear NN atmosphere (hence-

forth referred to as the NONA HCM), (2) the ocean model with NN coupled to an LR atmospheric

model (the NOLA HCM), (3) the ocean model with LR coupled to an NN atmosphere (LONA), and

(4) the ocean model with LR coupled to an LR atmosphere (LOLA). We compared these 4 HCMs to

see the effects from incorporating nonlinearity in the Tsub parameterization and in the atmospheric

response to the SST, leading to a better understanding of the role of nonlinearity in intermediate

coupled models of ENSO.

This paper is organized as follows: The data and models used are described in Sect. 2. In Sect.

3, the interannual variability of the 4 HCMs over a 167-year period is examined. In Sect. 4, principal

component analysis (PCA) and nonlinear principal component analysis (NLPCA) are applied to the

SST anomalies (SSTA) simulated by the 4 HCMs, and the results are compared with observations,

while in Sect. 5, NLPCA is applied to the wind stress anomalies simulated by the HCMs.
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2 Data and models

2.1 Data

The monthly wind stress on a 2◦×2◦ grid for the period of January 1964 – January 2002 was obtained

from Florida State University (FSU). The monthly SST came from the reconstructed historical SST

dataset by Smith et al . [1996] for the period of January 1950 – December 2001 with a 2◦ by 2◦

resolution over the global oceans. The SST were converted to the Lamont ocean model grid using

linear interpolation.

2.2 Neural network models

NN is a nonparametric statistical model for extracting nonlinear relations in the data [Bishop, 1995;

Hsieh and Tang , 1998]. Figure 1a shows a common NN model configuration for nonlinear regression.

A “hidden” layer of variables, called “neurons” in NN jargon, is placed between the input and output

variables. The jth hidden neuron is assigned the value yj , given by

yj = tanh(
∑

i

wijxi + bj),

where xi is the ith input values, wij and bj are the weight and bias parameters respectively. The

hyperbolic tangent function is used as the transfer function (other forms of the transfer function can

also be used, since it only serves as a basis function).

The output neuron z is calculated by a linear combination of the neurons in the hidden layer, i.e.

z =
∑

j

w̃jyj + b̃ .

To construct a NN model for nonlinear regression, the predictor variables are the inputs, and the

predictands are the outputs of the network.

The cost function

J = 〈(z − zobs)
2〉+ p

∑

l

W 2
l
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has a first term measuring the mean square error between the model output z and the observed data

zobs, and a second term penalizing the use of excessive weight and bias parameters, where p is a penalty

parameter and Wl represents all the weight and bias parameters of the NN. The NN model is trained

by finding the optimal parameters wij , w̃j , bj and b̃ as the cost function is minimised. An ensemble of

200 NN models with random initial parameters were trained, then the 30 NN models with the smallest

cost functions were selected, so the final output of the NN model was actually the ensemble average

of the 30 individual NN model outputs. Ensembles can alleviate the problem of multiple minima in

the cost function, commonly found with NN models [Hsieh and Tang , 1998].

2.3 Ocean model

The ocean model used in this research is the ocean component of the Lamont coupled model (henceforth

the Lamont ocean model) but with a new parameterization of the subsurface temperature Tsub and

two extra terms added to the temperature equation for the surface layer. It is a reduced gravity model

consisting of an active upper layer with a fixed depth surface mixed layer, overlying a motionless

deep layer, covering the tropical Pacific from 29◦S to 29◦N. The resolution of ocean dynamics is 2◦ in

longitude and 0.5◦ in latitude, but that of SST physics is 5.625◦ in longitude and 2◦ in latitude. The

integration time step is 10 days.

The temperature equation for the surface layer in the Lamont model [Zebiak and Cane, 1987, Eq.

A11] has two extra terms added [Boulanger and Menkes, 2001]:

∂T

∂t
= −u1 · ∇(T̄ + T )− ū1 · ∇T − {M(w̄s + ws)−M(w̄s)}T̄z −M(w̄s + ws)

T−Te

H1

−αsT −KT∂zT +AH∇
2 T, (1)

where T (T̄ ) is the anomalous (mean) SST, u1 (ū1) and ws (w̄s) the anomalous (mean) horizontal

currents and upwelling, respectively, M(x) a function which equals x if x is positive and equals zero

otherwise, the entrainment temperature anomaly Te = γTsub+(1−γ)T , and αs a damping parameter.
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The two extra terms added are the vertical mixing term −KT∂zT and the horizontal diffusion term

AH∆HT , where we take KT = 2.9× 10−5 m s−1 and AH = 2000 m2 s−1.

In the Lamont ocean model, Tsub, the ocean temperature anomaly below the mixed layer, is

parameterized in terms of the thermocline depth anomaly h:

Tsub =















A1{tanh[B1(h̄+ h)]− tanh(B1h̄)} , h ≥ 0

A2{tanh[B2(h̄− h)]− tanh(B2h̄)} , h < 0 ,

(2)

where A1 = 28◦C, B1 = 0.0125m−1, A2 = −40◦C, and B2 = 0.03m−1, and h̄(x) is specified using an

observed equatorial thermocline distribution after Colin et al . [1971].

In this paper, we used an NN or LR model to estimate Tsub from h. First the Lamont ocean

model was forced by the FSU wind stress anomalies from 1964-2001, and the model thermocline depth

anomalies and current anomalies were extracted. Tsub was then inversely estimated [Zhang et al .,

2004] from the SST anomaly equation (1) from 1964-2001 using the simulated current anomalies and

the observed monthly SST fields from Smith et al . [1996].

Principal component analysis (PCA), i.e. empirical orthogonal function (EOF) analysis, was first

applied to the thermocline depth anomaly h(x, y, t) and the subsurface temperature anomaly Tsub(x, y, t):

h(x, y, t) =
∑

n

an(t) fn(x, y) ,

Tsub(x, y, t) =
∑

n

cn(t) en(x, y) ,

where n indicates the nth mode. For the thermocline depth anomaly h, the first four PCA modes

accounted for 48% of the variance, while for the Tsub, the first five modes accounted for 69% of the

variance. The NN used has at most four input neurons, namely the first four principal components

(PCs) an(t) for h, and the single output neuron is one of the five leading PCs cn(t) for Tsub, i.e. a

different NN model was used to predict each predictand cn, using at most 4 an as predictors, with

no time lag between the predictors and the predictand. Since the NN model is performing nonlinear
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regression, we checked the role of nonlinearity by building a corresponding linear regression (LR)

model for comparison.

Data from 1964 to 2001 were used to train the NN model or the corresponding LR model. For

each Tsub PC, we used cross-validation to find out the number of hidden neurons, the number of

PC predictors and the weight penalty parameter p for the the best NN result, and the number of

PC predictors for the best LR result. Cross-validation was performed as follows: First, the data

record was divided into 5 equal segments. One segment was selected to be the test data and the rest,

training data. The NN (or LR) model was built using the training data only, and model simulations

on the independent test data were obtained. Next, another segment was selected as the test data,

and a new model built. This was repeated until the entire data record had been used for independent

testing. The model test results on the entire record were compared with the observed Tsub PCs. From

cross-validation, the optimal NN or LR Tsub model was obtained.

2.4 Atmospheric model

The FSU wind stress anomalies were first smoothed by a 3-month running mean, then the ocean

models were driven by the FSU wind stress anomalies from 1964-2001. PCA was applied to the model

SSTA T (x, y, t), and combined PCA to both components of the FSU wind stress anomalies τ (x, y, t):

T (x, y, t) =
∑

n

ãn(t) f̃n(x, y) ,

τ (x, y, t) =
∑

n

c̃n(t) ẽn(x, y) .

For T , the first four PCA modes accounted for 91.6 % and 91.8 % of the variance respectively for the

ocean model with NN and LR Tsub parametrization, while for τ , the first 7 modes contained 39.5% of

the variance. The NN or LR used has at most four inputs, namely the first four PCs for T , and the

single output is one of the first 7 PCs for τ .

Tables 1 shows the cross-validated skills for the first 7 wind stress PCs attained by the NN and
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LR models where the predictors were the SSTA PCs from the ocean model with an NN or LR Tsub

parametrization. In general, the NN atmospheric model predicted the wind stress PCs slightly better

than the LR. PC2 was harder to predict than PC3, and PC4 was the most difficult. Henceforth, only

if the cross-validated correlation of the wind stress PC is over 0.1, will this PC be included in the

atmospheric model, i.e. PC4 will not be used in all the atmospheric models, and some of the higher

PCs are also excluded from the LR atmospheric model.

3 Interannual variability from the coupled models

As common with statistical atmospheric models, the variance of the predicted wind stress was lower

than that observed, hence the estimated wind stress were scaled up by an adjustable scale factor µ

[Barnett et al ., 1993; Tang and Hsieh, 2002]. To determine µ, each HCM was repeatedly integrated for

167 years, with µ ranging from 1.10 to 1.30 at increments of 0.01. Among them, the model with overall

the most realistic model Nino3 and Nino34 SSTA indices, and La Niña and El Niño SSTA patterns (as

determined by the nonlinear principal component analysis method described in the following section)

was selected. Hence µ was chosen to be 1.19, 1.26, 1.21 and 1.19 respectively in the NONA, NOLA,

LONA and LOLA HCMs.

From construction, the statistical atmospheric models only capture the low frequency relationship

between SSTA and the wind stress. But high frequency wind variability is important for the model

to exhibit irregular behavior. Neelin et al . [1998] pointed out that there is a greater likelihood for

the irregularity of ENSO to be due to external uncoupled atmospheric noise as opposed to internal

nonlinear dynamics. In order to produce irregular behavior, “atmospheric noise”, i.e. high frequency

wind variability with a monthly timescale was added as in Kirtman and Schopf [1998]. The difference

between the unsmoothed FSU wind stress from 1964-2001 and its 9 month running mean was taken

as the atmospheric noise. At the initial time of the coupled model run, a random date was selected
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to begin sampling the noise dataset. Each successive simulation month would sample each successive

month of noise, continuing for a period of time until a new random start date was chosen.

In this section, we present results of the 167-year coupling experiments. The ocean model was first

forced by the FSU wind stress for 37 years, then coupled to the atmosphere and integrated forward

for 167 years (2004 months). Figure 2 shows the 450-month long records of the area-averaged SSTA

for the regions Niño3 (5◦N-5◦S, 150◦W-90◦W) and Niño34 (5◦N-5◦S, 170◦W-120◦W). The oscillations

in the LONA and LOLA models (where the ocean used LR Tsub parametrization) appear to be more

regular in structure with smaller inter-episode spacing than the oscillations in NONA and NOLA

(where the ocean used NN Tsub parametrization). That warm episodes tend to have larger amplitude

than cool episodes in the more nonlinear models (Figure 2) is consistent with An and Jin [2004], where

nonlinear dynamical heating terms are shown to strengthen the warm episodes relative to the cool

ones.

If we define a strong El Niño as a warm episode where the Niño3 anomaly index is greater than

1.5◦C, then over 167 years there were 20, 7, 16, 13 strong El Niño episodes in the NONA, NOLA,

LONA and LOLA model runs, respectively. The standard deviation of Niño3 (Niño34) SSTA for

the NONA, NOLA, LONA, LOLA models and observation were 0.74 (0.70), 0.63 (0.60), 0.77(0.72),

0.82 (0.76), 0.88 (0.78), respectively. Although among the four HCMs, NONA had more strong warm

episodes than others, the standard deviation of Niño3 (Niño34) SSTA for NONA was not the biggest

because there was more inter-episode spacing, as the oscillations in NONA were more irregular than

in the others.

Figure 3 shows the Fourier spectral analysis of the Niño3 SSTA from the 4 HCMs over 167 years and

the observed Niño3 SSTA over the period 1950-2001. Models where the ocean used NN parametriza-

tion (NONA and NOLA) had considerably broader spectra than models where the ocean used LR

(LONA and LOLA). Using NN instead of LR in the atmosphere also broadened the spectrum (com-
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pare NONA with NOLA, and LONA with LOLA). Among the four HCMs, NONA had by far the

best agreement with observations, as it exhibited two main spectral peaks at 44-month period (0.0229

month−1 frequency) and 65-month (0.0154 month−1), while observations revealed two main peaks at

45-month period (0.0225 month−1) and 69-month (0.0144 month−1). The other HCMs showed only a

single dominant peak: at 58-month period (0.0172 month−1) for NOLA, 45-month (0.0223 month−1)

for LONA, and 42-month (0.0240 month−1) for LOLA.

Figure 4 shows the time-longitude cross sections of the simulated SSTA from the four HCMs along

the equator during year 67 to year 96. The oscillations were much more regular in the HCMs with the

ocean model using LR parametrization (LONA and LOLA) than the ones with NN parametrization

(NONA and NOLA), which displayed quiet inter-episode periods. Figure 5 shows the time-longitude

cross sections of the simulated thermocline depth anomaly along the equator from the four HCMs,

showing eastward propagation of the thermocline anomalies as the upper ocean heat content in the

western equatorial Pacific is discharged.

4 PCA and nonlinear PCA of SSTA

We next compare the 2 leading PCA modes of the model SSTA during the last 100 years from the

4 HCMs. All the spatial patterns of PCA mode 1 from the 4 HCMs (Figures 6a, c, e and g) agreed

well with the obseved pattern (Figure 6i). The percentage of the SSTA variance accounted for by

the first mode is 79.7%, 79.1%, 86.6% and 88.0% for the NONA, NOLA, LONA and LOLA models

respectively, versus 56.5% for observations.

For PCA mode 2, the patterns from LONA and LOLA models (Figures 6f and h) did not do as well

as those from the NONA and NOLA models (Figure 6b and d) in agreeing with the observed pattern

(Figure 6j), which shows a west-east dipole structure. The percentage variance accounted for by mode

2 is 7.5%, 6.1%, 5.4% and 5.6% for the NONA, NOLA, LONA and LOLA models respectively, versus
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12.7% for observations. Thus relative to observations, the four HCMs all have too much variance

concentrated in the first PCA mode, and not enough in their second mode, the situation being worse

for the two HCMs using LR parametrization in their ocean component.

Neural networks have been introduced to nonlinearly generalize the PCA method [Kramer , 1991],

in that instead of a straight line, a curve is found to pass through the middle of the data cloud. The

nonlinear principal component analysis (NLPCA) code and procedure from Hsieh [2001, 2004] were

applied to the SSTA from the four HCMs during the last 100 years. The first 6 PCs of the SSTA were

supplied as inputs to the NLPCA network (Figure 1b). The NLPCA model fits a curve to the data

in the 6-dimensional PC-space. At one end of this curve, where the nonlinear principal component

(NLPC) u assumes its minimum value, one finds the strongest La Niña episodes, while at the other

end of the curve, where u assumes its maximum value, one finds the strongest El Niño episodes.

Figure 7 shows the NLPCA mode 1 spatial patterns of SSTA at min(u) and at max(u) for the four

models and for the observed data. The linear PCA solution has the same standing spatial anomaly

pattern (but for a sign change) as the PC flips from its minimum to its maximum value. In contrast,

the NLPCA mode 1 of the observed data shows the cool SSTA during strong La Niña (Figure 7i) to

be located much further west of the warm anomalies found during strong El Niño (Figure 7j). This

asymmetry between La Niña and El Niño SSTA is evident in the NONA, NOLA and LONA HCMs

(Figures 7a-b, c-d and e-f), but is least evident in the LOLA model (Figures 7g and h). The enhanced

asymmetry between La Niña and El Niño seen in our more nonlinear models demonstrates the value

of using the nonlinear NN approach over the earlier use of linear statistical methods in HCMs [Kang

and Kug , 2000]. The spatial correlations and root mean square differences (RMSD) between these

model SSTA patterns and the observed patterns during strong El Niño and strong La Niña (Table 2)

showed that NONA and NOLA did slightly better than LONA and LOLA in simulating the strong El

Niño SSTA pattern, but slightly worse in simulating the strong La Niña SSTA pattern.

12



To gauge the nonlinearity in a dataset, we computed the percentage variance accounted for by the

NLPCA mode 1 (pNL) and that by the PCA mode1 (pL), and calculated the normalized difference

δ (= (pNL − pL)/pL). If the dataset is completely linear, then the NLPCA mode 1 will retrieve the

same straight line approximation of the dataset as the PCA mode 1, and δ will be 0. The larger

δ is, the more nonlinear is the dataset and the greater is the asymmetry between the El Niño and

La Niña patterns. We found that δ had the values 6.2 % (NONA), 5.2% (NOLA), 0.3% (LONA),

0.03% (LOLA) and 11.7% (observed). In the original Lamont coupled model [Zebiak and Cane, 1987],

we found δ to be 2.1%. This implies that none of the models could match the observed nonlinear

structure of the SSTA in ENSO. NONA and NOLA managed to improve on the weak nonlinearity in

the Lamont coupled model, while LONA and LOLA were even more linear than the original Lamont

model. Thus the nonlinearity in the NN parametrization of Tsub has helped in giving the HCMs a

more asymmetric, nonlinear structure in the ENSO SSTA.

5 NLPCA of wind stress anomalies

The NLPCA was also applied to the model wind stress anomalies (WSA) during the last 100 years and

the observed anomalies. The first 7 PCs of the WSA were supplied as inputs to the NLPCA network

(Figure 1b). Figure 8 shows the WSA NLPCA mode 1 spatial patterns at min(u) and at max(u) for

the four HCMs and the observed data. For the strong La Niña WSA pattern (Figures 8a, c, e, g, i),

the easterly anomalies in the western equatorial Pacific in the four HCMs were all stronger than the

observed anomalies, especially for NOLA and LOLA (Figures 8c and g). Also, strong WSA blowing

away from the equator in the region 10◦S-25◦S, 165◦E-140◦W and the region 5◦N-15◦N, 180◦-100◦W

can be found in NOLA and LOLA (Figures 8c and g), but not in NONA, LONA and the observations

(Figures 8a, e and i).

For the strong El Niño WSA pattern (Figures 8b, d, f, h and j), relatively strong wind anomalies
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blowing towards the equator in the region 10◦S-20◦S, 150◦E-180◦ can be found in NOLA and LOLA

(Figures 8d and h) but not in NONA, LONA and the observations. The rather strong easterly wind

anomalies observed (Figure 8j) in the region 0◦N-10◦N,120◦E-160◦E are only simulated well in the

LONA model (Figure 8f) and to a lesser extent in the NONA model (Figure 8b). In sum, the two

HCMs with NN atmosphere simulated the observed WSA during strong El Niño and strong La Niña

noticeably better than the two HCMs with LR atmosphere. This is confirmed by the spatial correlation

and RMSD between the simulated and observed WSA patterns (Table 2), where NONA and LONA

did much better than NOLA and LOLA.

To gauge the nonlinearity in the WSA dataset, we compared the NLPCA mode 1 solution to

the PCA mode 1 solution, and found that δ had the values 21.9 % (NONA), 0.4% (NOLA), 21.9%

(LONA), 0.1% (LOLA) and 34.7% (observed). For the original Lamont coupled model, δ was 5.3%.

Again, none of the models quite matched the nonlinearity in the observed ENSO WSA. NONA and

LONA managed to dramatically improved on the weak nonlinearity in the Lamont coupled model,

while NOLA and LOLA were even more linear than the original Lamont model.

6 Summary and Conclusion

In this paper, we investigated the potential for improving hybrid coupled modeling of the tropical

Pacific by the use of nonlinear NN methods. NN was introduced for the nonlinear parametrization of

the subsurface temperature in the Lamont ocean model, and for the nonlinear estimation of the WSA

from the SSTA. To compare with the nonlinear regression by NN, corresponding linear regression (LR)

models were also developed. By combining the NN or the LR version of the ocean model and the

atmospheric model, four HCMs resulted — NONA (with NN for both the ocean and atmosphere),

NOLA (NN for ocean and LR for atmosphere), LONA (LR ocean and NN atmosphere) and LOLA

(LR for both ocean and atmosphere).
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For the coupled model Niño3 SSTA spectrum, using NN in the ocean model produced a much

broader spectrum than using LR, which gave basically a single narrow spectral peak. Thus the

oscillations in LONA and LOLA were all far too regular when compared to the observed oscillations.

Using NN in the atmospheric model in addition to the ocean model furthered broadened the SSTA

spectrum, yielding a spectrum with two main peaks at periods of 44 and 65 months, in good agreement

with the observed spectrum, where there were two peaks at 45 and 69 months (Figure 3).

PCA on the SSTA also showed that using the LR ocean model led to excessive concentration of

energy in the first mode and poorer agreement of the mode 2 spatial patterns between the models

and observations. Nonlinear PCA (NLPCA) on the SSTA was less conclusive, as using the NN ocean

model instead of LR yielded a slightly better spatial pattern during strong El Niño but also a slightly

worse pattern during La Niña. From δ (the normalized difference between the percentage variance

explained by the NLPCA mode 1 and that by the PCA mode 1), we found that for SSTA all the

coupled models were too linear compared to the observations. However, using the NN ocean model

was able to alleviate the weak nonlinearity in the original Lamont coupled model.

NLPCA applied to the WSA revealed that using the NN atmospheric model instead of LR led to

much better agreement in the spatial anomaly patterns between the coupled model and observations

during both strong El Niño and La Niña. For the WSA, δ again revealed the original Lamont coupled

model to be too linear, and that using the NN atmospheric model considerably alleviated this problem.

Thus, the use of NN in the ocean model and in the atmospheric model improved on the nonlinear

behaviour of the coupled model.
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Barnett, T. P., M. Latif, N. E. Graham, M. Flügel, S. Pazan, and W. White (1993), ENSO and ENSO

related predictability, part 1: prediction of equatorial sea surface temperature with a hybrid

coupled ocean-atmosphere model, J. Climate, 6, 1545-1566, 1993.

Barnston, A. G., et al. (1994), Long-lead seasonal forecasts— where do we stand? Bull. Amer. Meteor.

Soc., 75, 2097-2114.

Blank, B., J. D. Neelin and D. Gutzler (1997), Estimating the effect of stochastic wind stress forcing

on ENSO irregularity, J. Climate, 10, 1473-1486.

Bishop, C. M. (1995), Neural Networks for Pattern Recognition, Clarendon Pr., Oxford, pp 482, 1995.

Boulanger, J-P., and C. Menkes (2001), The Trident Pacific model, part 2: role of long equatorial

wave reflection on sea surface temperature anomalies during the 1993-1998 TOPEX/POSEIDON

period, Clim. Dynam., 17, 175-186.

Colin, C., C. Henin, P. Hisard, and C. Oudot (1971), Le Courant de Cromwell dans le Pacifique central

en fevrier, Cah, ORSTOM Ser Oceanogr., 9, 167-186.

Hsieh, W. W. (2001), Nonlinear principal component analysis by neural networks, Tellus, 53A, 599-615.

Hsieh, W. W. (2004), Nonlinear multivariate and time series analysis by neural network methods, Rev.

Geophys., 42, RG1003, doi:10.1029/2002RG000112.

Hsieh, W. W., and B. Tang (1998), Applying neural network models to prediction and analysis in

meteorology and oceanography, Bull. Am. Meteorol. Soc., 79, 1855-1870.

17



Kang, I.-S., and J.-S. Kug (2000), An El-Nino prediction system using an intermediate ocean and a

statistical atmosphere, Geophys. Res. Lett., 27, 1167-1170.

Kirtman, B. P., and P. S. Schopf (1998), Decadal variability in ENSO predictability and prediction,

J. Climate, 11, 2804-2822.

Kramer, M. A. (1991), Nonlinear principal component analysis using autoassociative neural networks,

AIChE Journal , 37, 233-243.

Latif, M., and A. Villwock (1990), Interannual variability as simulated in coupled ocean-atmosphere

model, J. Mar. Syst., 1, 51-60.

Neelin, J. D., D. S. Battisti, A. C. Hirst , F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak (1998),

ENSO theory, J. Geophys. Res., 103, 14261-14290.

Palmer, T. N., and D. L. T. Anderson (1994), The prospects for seasonal forecasting— a review paper.

Q. J. R. Meteorol. Sci., 7, 755-793.

Smith, T. M., R. W. Reynolds, R. E. Livezey, and D. C. Stokes (1996), Reconstruction of historical

sea surface temperatures using empirical orthogonal functions, J. Climate, 9, 1403-1420.

Syu, H.-H., J. D. Neelin, and D. Gutzler (1995), Seasonal and interannual variability in a hybrid

coupled GCM. J. Climate, 9, 2121-2143.

Tang, Y., W. W. Hsieh, B. Tang, and K. Haines (2001), A neural network atmospheric model for

hybrid coupled modelling, Clim. Dynam., 17, 445-455.

Tang, Y., and W. W. Hsieh (2002), Hybrid coupled models of the tropical Pacific — ENSO prediction.

Clim. Dynam. 19, 343-353.

Tang, Y., and W. W. Hsieh (2003), ENSO simulation and prediction in a hybrid coupled model with

data assimilation, J. Meteo. Soc. Japan, 81, 1-19.

18



Zebiak, S. E., and M. A. Cane (1987), A model El Niño-Southern Oscillation, Mon. Wea. Rev., 115,

2262-2278.

Zhang, R., J. B. Antonio, G. M. Raghuram, C. H. Eric, and B. Joaquim (2004), A new approach to im-

proved SST anomaly simulations using altimeter data: Parameterizing entrainment temperature

from sea level, Geophys. Res. Lett., 31, doi:10.1029/2003GL019237.

19



Table 1: Cross-validated correlation and root mean square error (RMSE) (in parenthesis) between the

predicted wind stress anomaly PCs and the observed PCs. In the first column, NN or LR means the

predictors are the SSTA from the ocean model with an NN or LR Tsub parameterization, while in the

second column, NN or LR indicates the method used to estimate the wind stress anomaly PCs from

the SSTA.

SSTA Atmos. Correlation (RMSE)

PC1 PC2 PC3 PC4 PC5 PC6 PC7

NN NN 0.836 0.224 0.531 0.085 0.125 0.322 0.207

(2.04) (3.26) (2.71) (2.60) (2.12) (1.91) (1.95)

NN LR 0.821 0.144 0.349 0.028 -0.007 0.073 0.274

(2.12) (3.29) (2.99) (2.58) (2.15) (2.01) (1.80)

LR NN 0.835 0.276 0.481 0.010 0.099 0.319 0.286

(2.05) (3.21) (2.82) (2.64) (2.13) (1.91) (1.83)

LR LR 0.804 0.194 0.414 -0.025 0.101 0.096 0.075

(2.21) (3.25) (2.92) (2.63) (2.13) (2.00) (1.91)
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Table 2: Spatial correlation and RMS difference (RMSD) between the observed and model ENSO

patterns, where the spatial patterns of SSTA and wind stress anomaly (WSA) for strong El Niño and

strong La Niña were extracted by the NLPCA method.

Correlation RMSD

NONA NOLA LONA LOLA NONA NOLA LONA LOLA

La Niña SSTA 0.84 0.86 0.89 0.89 0.17 0.15 0.13 0.13

El Niño SSTA 0.91 0.91 0.88 0.85 0.22 0.19 0.23 0.23

La Niña WSA 0.87 0.68 0.89 0.62 0.06 0.10 0.06 0.14

El Niño WSA 0.92 0.65 0.92 0.73 0.09 0.19 0.08 0.15
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Figure 1: (a) An schematic diagram of a neural network (NN) model for nonlinear regression, with

one ‘hidden’ layer of neurons (i.e. variables) (denoted by circles) sandwiched between the input layer

x and the output layer z. Increasing the number of hidden neurons y increases the number of model

parameters. In this paper, the output layer has only a single neuron. (b) A schematic diagram of

the NN model for nonlinear principal component analysis (NLPCA). There are 3 layers of hidden

neurons sandwiched between the input layer x on the left and the output layer x′ on the right. Next

to the input layer is the encoding layer, followed by the ‘bottleneck’ layer (with a single neuron u),

which is then followed by the decoding layer. Effectively, a nonlinear function u = F (x) maps from

the higher dimension input space to the lower dimension bottleneck space, followed by an inverse

transform x′ = G(u) mapping from the bottleneck space back to the original space, as represented by

the outputs. To make the outputs as close to the inputs as possible, the cost function J = 〈‖x−x′‖2〉

(i.e. the mean square error, MSE) is minimized. Data compression is achieved by the bottleneck,

yielding the nonlinear principal component (NLPC) u. See Hsieh (2004) for details. In Sects. 4 and

5, 3 neurons were used in each of the encoding and decoding layers, and there were 6 (7) input and 6

(7) output neurons in Sect.4 (Sect.5).
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Figure 2: The Niño3 (solid line) and Niño34 (dotted line) SSTA from the (a) NONA, (b) NOLA, (c)

LONA and (d) LOLA HCMs, and (e) observations.
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iñ
o3

S
S
T
A

tim
e
series

from
th
e
(a)

N
O
N
A

,
(b
)
N
O
L
A
,
(c)

L
O
N
A

an
d
(d
)
L
O
L
A

H
C
M
s,

an
d
(e)

ob
servation

s.

24



Figure 4: Time-longitude cross section along the equator of SSTA from the (a) NONA , (b) NOLA,

(c) LONA and (d) LOLA HCMs, and (e) observations (from 1967-1996). With a contour interval of

1◦C, the positive contours are shown as solid curves, the negative contours as dashed curves, the zero

contour as a thick solid curve, and positive anomalies above 0.5◦C are shaded.
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Figure 5: Time-longitude cross section along the equator of the thermocline depth anomaly from the

(a) NONA , (b) NOLA, (c) LONA and (d) LOLA HCMs. The plotted anomalies have been smoothed

by a 3-month running mean. The contour interval is 20 m, and positive anomalies above 10 m are

shaded.
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Figure 6: The first two PCA modes of the SSTA. From top to bottom, the five rows present the results

from the NONA (a-b), NOLA (c-d), LONA (e-f), LOLA (g-h) models, and observations (i-j). The

contour interval is 0.02.
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Figure 7: The SSTA patterns (in ◦C) of the nonlinear principal component analysis (NLPCA) mode 1

when the NLPC u is minimum (corresponding to strong La Niña) (left column) or maximum (strong

El Niño) (right column). The five rows from top to bottom present the SSTA from the NONA (a-b),

NOLA (c-d), LONA (e-f), LOLA (g-h) models, and observations (i-j). The contour interval is 0.5◦C.
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Figure 8: The WSA patterns of the nonlinear principal component analysis (NLPCA) mode 1 when

the NLPC u is minimum (corresponding to strong La Niña) (left column) or maximum (strong El

Niño) (right column). The five rows from top to bottom present the WSA from the NONA (a-b),

NOLA (c-d), LONA (e-f), LOLA (g-h) models, and observations (i-j).
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