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8 [1] The Madden-Julian Oscillation (MJO), the primary
9 mode of large-scale intraseasonal variability in the tropics,
10 is known to relate to the mid-latitude atmospheric
11 variability. Using neural network techniques, a nonlinear
12 projection of the MJO onto the precipitation and 200-hPa
13 wind anomalies in the northeast Pacific during January–
14 March shows asymmetric atmospheric patterns associated
15 with different phases of the MJO. For precipitation, the
16 strength of the nonlinear effect to the linear effect was 0.94
17 (in terms of the squared anomalies and averaged over all
18 phases of the MJO), indicating strong nonlinearity, while for
19 the 200-hPa wind, the ratio was 0.55, indicating moderate
20 nonlinearity. In general, anomalous winds blowing from the
21 north or from land were associated with negative
22 precipitation anomalies, while winds from the south or
23 from the open ocean, with positive precipitation anomalies.
24 The nonlinear effects generally induced positive
25 precipitation anomalies during all phases of the MJO.
26 Citation: Jamet, C., and W. W. Hsieh (2005), Nonlinear

27 atmospheric variability in the winter northeast Pacific associated

28 with the Madden-Julian oscillation, Geophys. Res. Lett., 32,

LXXXXX, doi:10.1029/2005GL023533.30

31 1. Introduction

32 [2] The Madden-Julian Oscillation (MJO) is the domi-
33 nant mode of the subseasonal tropospheric variability over
34 the tropical Indian and Pacific Oceans. The MJO was
35 originally identified as a coherent, eastward-propagating
36 perturbation in the tropical sea level pressure, upper level
37 zonal wind and atmospheric convection, with a relatively
38 broad spectral peak of 30–90 days [Madden and Julian,
39 1994]. The impact of the MJO on the atmospheric circula-
40 tion outside of the tropics has been of considerable interest.
41 There is evidence that deep tropical convection forces the
42 mid-latitude flow both directly [Hoskins and Karoly, 1981;
43 Horel and Wallace, 1981] and indirectly [Schubert and
44 Park, 1991]. Connections have been found between mid-
45 latitude weather variations and the MJO [Higgins and Mo,
46 1997; Mo and Higgins, 1998; Jones, 2000; Bond and
47 Vecchi, 2003, hereinafter referred to as BV]. Most of the
48 studies on the MJO used an index to present and explain the
49 MJO life cycle in the tropics and extratropics. These studies
50 worked with linear methods, e.g. phase sum composite,
51 correlation, regression [Hendon and Salby, 1994; Knutson
52 and Weickmann , 1987; Rui and Wand , 1990 ; Malone y and
53 Hartmann, 1998; BV]. Recently, a multiple linear regres-
54 sion model has been used to analyse the relationships

55between eastward- and westward-moving intraseasonal
56modes by Roundy and Frank [2004], who concluded that
57the regression model produced physically valid analyses
58that revealed processes of partly nonlinear wave interactions
59in the tropical atmosphere.
60[3] In recent years, neural network (NN) methods have
61been increasingly applied to nonlinearly study the atmo-
62sphere and oceans, with reviews given by Hsieh and Tang
63[1998] and Hsieh [2004]. In this study, we apply fully
64nonlinear NN techniques to create a nonlinear composite
65life cycle and try to separate the linear and nonlinear
66responses of the atmosphere to the MJO. The association
67between the MJO and the climate in the northeast Pacific is
68investigated by applying a nonlinear projection (i.e. nonli-
69near regression) of the BV MJO index onto the 200-hPa
70wind and precipitation anomalies during winter (January–
71March). If x denotes the MJO index and y, the atmospheric
72response to MJO, the nonlinear response function y = f (x)
73can be obtained via NN [Wu and Hsieh, 2004] (the
74nonlinear projection by NN is simply called an NN
75projection thereafter). In contrast to the linear projection,
76the NN projection detects the fully nonlinear atmospheric
77variability associated with MJO. As the effects of the
78MJO over northeast Pacific and the northwestern part of
79North America (esp. western Canada) is not well docu-
80mented, the purpose of this study is to reveal the
81nonlinear association between the winter precipitation
82and 200 hPa wind anomalies in the northeast Pacific
83and the tropical MJO.

842. Data and Methods

85[4] To characterize the state of the MJO, we used the
86MJO index developed by Bond and Vecchi [2003], available
87for the period from January 1, 1980 to December 31, 2003.
88This index is composed of an amplitude A and a phase F
89based on the two leading principal components of the
90intraseasonal 850-hPa zonal wind in the 5�S–5�N band.
91An MJO event is defined as a period of 30 or more days
92during which A exceeds 0.7 standard deviation and during
93which F corresponds to eastward propagation for the entire
94period. In the A and F time series, values are only defined
95during MJO events.
96[5] For the variability in northeast Pacific, we examined
97the daily 200-hPa wind from the NCEP-NCAR extended
98reanalysis product [Kalnay et al., 1996] and the daily
99MSU precipitation (both downloadable from http://
100www.cdc.noaa.gov). The precipitation data, available
101during 1979–1995, were derived from channel 1 of the
102microwave sounding unit, which is sensitive to emission by
103cloud water and rainfall in the lowest few kilometers of the
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104 atmosphere [Spencer, 1993]. The MSU precipitation prod-
105 uct is only usable over the ocean. For both datasets, the
106 daily climatological means were subtracted from the daily
107 values to yield the anomalies. To obtain intraseasonal
108 anomalies, a Lanczos response bandpass filter with 240
109 weights and cutoff periods at 35 and 120 days was applied
110 to the wind and precipitation anomalies [Duchon, 1979]. We
111 studied the period 1980–1995 during the months January,
112 February and March for both datasets and the MJO index.
113 The analysis was performed only when MJO events were
114 present, thus shrinking the data record to 968 days. Our
115 study is focused on the northeast Pacific area, between
116 30�N–60�N and 150�W–112.5�W.
117 [6] After removing the linear trend, a combined prin-
118 cipal component analysis (PCA) was used to compress
119 the meridional and zonal wind anomalies, with the
120 8 leading principal components (PC) (accounting for
121 95.2% of the variance) retained. For the precipitation
122 anomalies, the 8 leading PCs, accounting for 64.4% of
123 the variance, were retained. Analysis using different
124 number of PCs showed that our results were not sensitive
125 to the number of modes retained as long as 8 or more
126 PCs were used.
127 [7] The multi-layer perceptron NN model with 1-hidden
128 layer used here has a similar structure to the multivariate
129 nonlinear regression model used for ENSO prediction by
130 our group [Hsieh and Tang, 1998]. Here, the NN model has
131 two inputs (predictors) A cos F and A sin F (from the MJO
132 index) and 8 output variables (the 8 leading PCs of the
133 200-hPa wind anomalies or precipitation anomalies). The
134 inputs were first nonlinearly mapped to intermediate vari-
135 ables hj (called hidden neurons), which were then linearly
136 mapped to the 8 output variables pk, i.e.

hj ¼ tanh wjA cosFþ ŵjA sinFþ bj
� �

;

pk ¼
X

j

~wjk þ ~bk ;

140 where ŵj, wj, ~wjk, bj and ~bk are the model parameters. With
141 enough hidden neurons, the NN model is capable of
142 modeling any nonlinear continuous function to arbitrary
143 accuracy. Starting from random initial values, the NN
144 model parameters were optimized so that the mean square
145 error (MSE) between the 8 model outputs and the
146 8 observed PCs was minimized. To avoid local minima
147 during optimization [Hsieh and Tang, 1998], the NN
148 model was trained repeatedly 25 times from random initial
149 parameters and the solution with the smallest MSE was
150 chosen.
151 [8] To reduce the possible sampling dependence of
152 a single NN solution, we repeated the above calculation
153 100 times with a bootstrap approach. A bootstrap sample
154 was obtained by randomly selecting data (with replacement)
155 968 times from the original record of 968 days, so that on
156 average about 63% of the original record was chosen in a
157 bootstrap sample [Efron and Tibshirani, 1993]. The ensem-
158 ble mean of the resulting 100 NN models was used as the
159 final NN solution, found to be insensitive to the number of
160 hidden neurons, which was varied from 2 to 10 in a
161 sensitivity test. Results from using 4 hidden neurons are

162presented. For comparison, the linear regression (LR) model
163is simply

pk ¼ wkA cosFþ ŵkA sinFþ bk :

1663. Results

167[9] The output signal from the NN projection is man-
168ifested by a surface in the 8 dimensional space spanned by
169the PCs; in contrast, the linear projection from LR is
170manifested by a plane in the same 8-D space (not shown).
171The phase of the MJO was binned into eight equal parts as
172in BV, phase 1 (�p � F < �3p/4), . . ., phase 8 (3p/4 �
173F < p). of the model outputs were computed for each
174phase bin by averaging all data with F falling within a given
175bin. Also by combining the PCs with their corresponding
176spatial patterns (the empirical orthogonal functions) yielded
177the spatial anomalies during each phase of the MJO. The
178composite spatial anomalies of the 200-hPa wind and
179precipitation are shown during the 8MJO phases in Figure 1,
180where the top two rows are the LR results, the middle two
181rows, the NN results, and the bottom two rows, the nonlin-
182ear residual (i.e. the NN projection minus the LR projec-
183tion). The corresponding tropical behaviour of the MJO
184during the 8 phases are shown in Figure 1 of BV.
185[10] With the LR projection, the composites for two out-
186of-phase bins (e.g. bin 1 and 5, 2 and 6, 3 and 7, 4 and 8)
187gave essentially the same spatial patterns but with oppo-
188sitely signed anomalies (Figure 1), due to the limitations of
189the LR method. In contrast, for the NN projection, the
190patterns and the amplitudes of the 200-hPa wind and
191precipitation anomalies changed as the phase of the MJO
192varied across the bins, without showing the strict antisym-
193metry between two out-of-phase bins. For instance, during
194phase 1 with LR projection, there is a dipole structure in the
195precipitation anomalies, with negative anomalies along the
196coast and positive anomalies further west. The superim-
197posed wind composite shows wind blowing from the land
198north of 40�N (Figure 1). In the NN projection during phase
1991, there is no dipole structure in the precipitation anomalies,
200but only a large tongue of positive anomalies in the open
201ocean with a maximum value of 0.7 mm day�1, much
202greater than the maximum of 0.4 mm day�1 found in the LR
203phase 1 projection. In the NN phase 1, there is an anticy-
204clonic cell over British Columbia, centered just north of
205Vancouver Island. Generally, over all 8 phases and for both
206the NN and LR projections, there is quite good agreement
207between the wind anomalies and the precipitation anomalies
208(Figure 1), with wind blowing from the north and from land
209associated with negative precipitation anomalies, and wind
210blowing from the south and from the open ocean, with
211positive precipitation anomalies, as expected.
212[11] By subtracting the LR projection from the NN
213projection, the nonlinear residual (bottom two rows of
214Figure 1) represents the purely nonlinear response after
215the removal of the linear response. The nonlinear residual
216for precipitation shows weak nonlinearity during phase 2
217and 3 (with maximum anomalies about 0.1 mm day�1) and
218strong nonlinearity during phase 1, 4 and 5, with anomalies
219reaching about 0.3 mm day�1. The lack of comparable
220negative anomalies in the nonlinear residual indicates that
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Figure 1. Composites during the 8 phases of the MJO for the LR projection (top two rows), the NN projection (middle
two rows) and the nonlinear residual (NN-LR) (bottom two rows), with precipitation anomalies shown in contour maps and
200-hPa wind anomalies by vectors. With negative contours dashed and zero contours thickened, the contour interval is
0.1 mm day�1, and the scale for the wind (5 m s�1) given beside the bottom right panel. The shaded areas indicate statistical
significance for the precipitation anomalies at the 5% level based on the bootstrap distribution.
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221 the nonlinear effects tend to induce positive precipitation
222 anomalies over all phases of the MJO.
223 [12] We next computed the average of the squared
224 precipitation anomalies in each panel in Figure 1, and let
225 r be the ratio between this computed value for the nonlinear
226 residual and that for the LR projection during a given phase.
227 For phase 1 to phase 8, the values of r are 1.69, 0.25, 0.26,
228 1.18, 1.79, 0.86, 0.56 and 0.96, respectively, which supports
229 our claim that nonlinearity is weak during phase 2 and 3,
230 but strong during phase 1, 4 and 5, where r actually exceeds
231 1 in all three phases (meaning that the squared anomalies of
232 the nonlinear residual averaged over the spatial domain
233 exceeds the corresponding value from the linear projection).
234 [13] For the wind speed anomalies, the r values are 0.37,
235 0.52, 0.69, 0.15, 0.19, 1.74, 0.28 and 0.43 during phase 1 to
236 phase 8, respectively. The nonlinear effect is weakest during
237 phase 4 and 5 and strongest during phase 6, where there is a
238 strong cyclonic cell on the West Coast. Averaged over all
239 8 phases, r is 0.55, versus an average r of 0.94 for
240 precipitation. Thus the overall nonlinear effect is stronger
241 in the precipitation than in the wind. We expect precipitation
242 to be more nonlinear than wind, as precipitation depends on
243 temperature and moisture convergence besides wind, and
244 latent heat, which is governed by a step function, introduces
245 strong nonlinearity into precipitation.

246 4. Conclusion

247 [14] This study has applied a fully nonlinear technique to
248 study the nonlinear association between the MJO and the
249 northeast Pacific variability of precipitation and 200-hPa
250 wind during January–March. By projecting from the MJO
251 index to the variables in the northeast Pacific, the linear and
252 nonlinear response to MJO were found. For precipitation,
253 the strength of the nonlinear effect to the linear effect was
254 0.94 (in terms of the squared anomalies and averaged over
255 all phases of the MJO). This means the nonlinear effect was
256 essentially of the same strength as the linear effect. For the
257 200-hPa wind, the ratio was 0.55, indicating moderate
258 nonlinearity. In general, anomalous winds blowing from
259 the north or from land were associated with negative
260 precipitation anomalies, while winds from the south or from
261 the open ocean, with positive precipitation anomalies. The
262 nonlinear effects generally induced positive precipitation
263 anomalies during all phases of the MJO. Follow-on work
264 could further explore time lags between MJO and variables
265 in the northeast Pacific.
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