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Abstract— With very noisy data, overfitting is a serious prob-
lem in pattern recognition. For nonlinear regression, having
plentiful data eliminates overfitting, but for nonlinear principal
component analysis (NLPCA), overfitting persists even with
plentiful data. Thus simply minimizing mean square error is
not a sufficient criterion for NLPCA to find good solutions in
noisy data.

A new index is proposed which measures the disparity
between the nonlinear principal components u and ũ for a data
point x and its nearest neighbour x̃. This index, 1 − CS (the
Spearman rank correlation between u and ũ), tends to increase
with overfitted solutions, thereby providing a diagnostic tool to
determine how much regularization (i.e. weight penalty) should
be used in the objective function of the NLPCA to prevent
overfitting. Tests are performed using autoassociative neural
networks for NLPCA on synthetic and real climate data.

I. INTRODUCTION

In principal component analysis (PCA), a given dataset is
approximated by a straight line, which minimizes the mean
square error (MSE) — pictorially, in a scatterplot of the data,
the straight line found by PCA passes through the ‘middle’
of the dataset. In nonlinear PCA (NLPCA), the straight line
in PCA is replaced by a curve. NLPCA can be performed by
a variety of methods, e.g. the autoassociative neural network
(NN) model [6, 5], and the kernel PCA model [11].

When using nonlinear machine learning methods, the
presence of noise in the data can lead to overfitting (i.e.
fitting to the noise). When plentiful data are available (i.e.
far more samples than model parameters), overfitting is not
a problem when performing nonlinear regression on noisy
data. Unfortunately, even with plentiful data, overfitting is
a problem when applying NLPCA to noisy data [4, 2]. As
illustrated in Figure 1, overfitting in NLPCA can arise from
the geometry of the problem, rather than from the scarsity of
data. Here for a Gaussian-distributed data cloud, a nonlinear
model with enough flexibility will find the zigzag solution of
Figure 1b as having a smaller MSE than the linear solution
in Figure 1a. Since the distance between the point A and a,
its projection on the NLPCA curve, is smaller in Figure 1b
than the corresponding distance in Figure 1a, it is easy to
see that the more zigzags there are in the curve, the smaller
is the MSE. However, the two neighbouring points A and B,
on opposite sides of an “ambiguity” line [8], are projected
far apart on the NLPCA curve in Figure 1b. Thus simply
searching for the solution which gives the smallest MSE is
not a sufficient criterion for NLPCA to find a satisfactory
solution in a highly noisy dataset.

Regularization (e.g. the addition of weight penalty or de-
cay terms in the objective functions in NN models) has been
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Fig. 1. Schematic diagram illustrating overfitting on noisy data. (a) PCA
solution for a Gaussian data cloud, with two neighbouring points A and B
shown projecting to the points a and b on the PCA straight line solution.
(b) A zigzag NLPCA solution found by a flexible enough nonlinear model.
Dashed lines illustrate “ambiguity” lines where neighbouring points (e.g. A
and B) on opposite sides of these lines are projected to a and b, far apart
on the NLPCA curve.

commonly used to control overfitting by limiting the effective
number of model parameters via the size of the weight
penalty parameter(s) [1]. Typically, to find the appropriate
weight penalty parameter P , a number of model runs are
made with different P values. The models are tested for their
MSE on independent data not used in the model building, and
the best model is chosen. Alternatively, Bayesian methods
have been developed to automatically estimate the size of
the weight penalty parameter in nonlinear regression and
classification problems [7, 3].

With NLPCA, if the overfitting arise from the data ge-
ometry (as in Figure 1b) and not from data scarsity, using
independent data to validate the MSE from the various
models is not a viable method for choosing the appropriate P .
Instead, we propose a new index for detecting the projection
of neighbouring points to distant parts of the NLPCA curve,
and use the index to choose the appropriate P .



II. AUTOASSOCIATIVE NN MODEL FOR NLPCA

To perform NLPCA, the NN model (Figure 2) is a standard
feed-forward (multi-layer perceptron) NN with 3 ‘hidden’
layers of variables or ‘neurons’ sandwiched between the
input layer x on the left and the output layer x′ on the right,
where the middle hidden layer has only a single “bottleneck”
neuron u. As an autoassociative model, the MSE between the
output x′ and the input x is minimized, and data compression
is achieved by the bottleneck, yielding the nonlinear principal
component (NLPC) u (see Appendix for details).

Fig. 2. Schematic diagram of the autoassociativie NN model for performing
NLPCA.

Using the Bayesian NN code trainbr.m [3] in the MATLAB
Neural Network Toolbox to perform NLPCA failed to pre-
vent the finding of zigzag solutions in Gaussian data clouds,
hence a different strategy is needed to choose the weight
penalty parameter.

III. RESULTS USING SYNTHETIC DATA

To introduce an index for detecting the projection of
neighbouring points to distant parts of the NLPCA curve,
we first find for each data point x its nearest neighbour x̃.
The NLPC u is standardized (i.e. mean removed and divided
by the standard deviation). Two indices based on the squared
distance between u and ũ (the standardized NLPC of x and
x̃, respectively) are introduced:

I1 =
(∑

|u − ũ|
)2

, (1)

I2 =
∑

(u − ũ)2 , (2)

where the sum is over all samples, and the distance between
u and ũ is measured by the L1 norm in (1) and the L2 norm in
(2). When some neighbouring points are projected to distant
parts of the NLPCA curve, the difference between u and ũ
becomes large for such pairs, leading to an increase in I1 and
I2. With C denoting the (Pearson) correlation coefficient and
CS, the Spearman rank correlation coefficient [10], two more
indices are introduced:

IP = 1 − C(u, ũ) , (3)

IS = 1 − CS(u, ũ) . (4)

When u and ũ are very different for some pairs, both C and
CS would drop, leading to a rise in the indices IP and IS.

The proposed strategy is to make a series of model runs
with the weight penalty parameter ranging from large to
small, then choose the model based on the minimum of one
of the I indices, i.e. the model which did the least amount
of divergent projection of nearest neighbours is selected as
the model with the appropriate P .

A test problem was set up as follows: For a random
number t uniformly distributed in the interval (−1, 1), the
signal x(s) was generated by using a quadratic relation

x
(s)
1 = t, x

(s)
2 =

1
2
t2. (5)

Isotropic Gaussian noise (with variance being one half the
average variance of x

(s)
1 and x

(s)
2 ) was then added to the

signal x(s) to give the noisy data x with 500 samples. Twelve
noisy data sets (containing the same signal) were generated.
NLPCA was performed on the data with weight penalty
parameter P at various values (10, 1, 0.1, . . . , 10−5, 0). The
four indices I1, I2, IP and IS were computed. Over the
twelve noisy data sets, the computed indices showed consid-
erable fluctuation, with IS showing the least amount. That
IS turned out to be the most reliable is probably because the
Spearman rank correlation is a robust statistic.

Figure 3 shows the behaviour of IS from NLPCA (nor-
malized by IS computed from the linear PCA method) as
P decreased. For large P , the NLPCA solution is relatively
close to the linear PCA solution, so the normalized IS is close
to 1. As P decreased, the NLPCA finds a nonlinear solution
with lower IS than the linear method; however, going to even
smaller P eventually leads to overfitting, resulting in zigzig
solutions and relatively large IS. Also note the increased
scatter among the 12 runs as P becomes small. Thus a viable
strategy for choosing the most appropriate P is to proceed
from large to small P , locate the first minimum of IS, and
choose the P at this minimum, or more generally choose the
smallest P with IS within 1+ε times this minimum IS value.
A heuristic choice of ε in our tests is 0.02.

Figure 4 shows (for one of the 12 datasets) the NLPCA
solution chosen by the IS criterion, indicating a successful
retrieval of the underlying quadratic signal. Figure 5 displays
a zigzag solution for the same dataset as a smaller P is used.
This confirms that the IS criterion is effective in preventing
overfitting. Additional tests replacing x

(s)
2 in (5) by x

(s)
2 = t2

(a stronger quadratic signal) and by x
(s)
2 = 0 (a linear signal)

also yielded satisfactory results from using the IS criterion
for model selection.

IV. RESULTS USING CLIMATE DATA

The method is also tested on two real climate datasets,
the tropical Pacific sea surface temperature (SST) and
the North American surface air temperature (SAT). The
monthly SST data on a 2◦×2◦ grid for the period 1948-
2005 came from the Extended Reconstructed Sea Surface
Temperatures (ERSST version 2) dataset [13] (downloadable
from ftp.ncdc.noaa.gov/pub/data/ersst-v2). The SST anoma-
lies were obtained by subtracting the climatological seasonal
cycle. PCA was performed on the SST anomalies in the
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Fig. 3. The index IS from NLPCA (normalized by IS computed from
the linear PCA method) for various values of the weight penalty parameter
P . The solid curve is the average over 12 noisy datasets, with the dashed
curves indicating the maxium and minimum values over the set of 12.

tropical Pacific domain of 124◦E-70◦E, 20◦S-20◦N. The 7
leading PCs containing 86.5% of the variance were retained.

The monthly land SAT data, from the Climate Research
Unit (CRU) at the University of East Anglia, UK [9]
(http://www.cru.uea.ac.uk/cru/data/hrg.htm), on a 0.5◦×0.5◦

grid were chosen for N. America (north of 20◦N) over the
period 1950-2004. The climatological seasonal cycle was
removed to yield the SAT anomalies, with only the 5 winter
months (November–March) used. PCA was used to compress
the data, with 7 leading PCs (containing 87.7 % of the
variance) retained. Because of mid-latitude weather systems,
the winter SAT dataset is much noisier than the tropical
Pacific SST, which is dominated by the El Niño-Southern
Oscillation phenomenon.

The leading PCs were input into the NLPCA model. For
SST, the minimum in IS occurred at P = 10−4, while for the
noisier SAT, the minimum occurred at P = 0.1 (Figure 6).
The NLPCA solutions for SST and SAT, displayed in Figures
7 and 8, respectively, showed that a more curved solution
was justified by the IS criterion for SST, but because of the
larger P selected for SAT, only a less curved solution can
be justified for the noisier SAT data. Note that fluctuations
in IS may produce a second (and possibly lower) minimum
at smaller P , as is found for SAT in Figure 6. In general,
these addition minima yield zigzag solutions and should be
ignored.

V. CONCLUSIONS

For NLPCA, the overfitting problem with noisy data is
much more serious than for nonlinear regression, since for
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Fig. 4. The NLPCA solution (shown as densely overlapping circles) for
the synthetic dataset (dots), with P = 0.1. The quadratic signal curve is
indicated by “+” and the linear PCA solution by the dashed line.
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Fig. 5. NLPCA of the same dataset as in Figure 4, but with P = 10−5.

NLPCA, overfitting can arise not only from data scarsity,
but also from the geometry of the data. Using independent
data to validate the MSE from the various models is not a
viable method for choosing the appropriate weight penalty
parameter P to control overfitting. Instead, we propose a
new index IS for detecting the projection of neighbouring
points to distant parts of the NLPCA curve, and use the
index to choose the appropriate P . The strategy for choosing
the most appropriate P is to run the model repeatedly
from large to small P , locate the first minimum of IS, and
choose the P at this minimum, or more generally choose
the smallest P with IS within 1 + ε times this minimum
IS value. Tests with synthetic data and with climate data
indicated that this criterion is effective in model selection,
discarding unjustifiable zigzag solutions. Although the tests
were performed with an NN model, this criterion for NLPCA
model selection should work well with other implementations
of nonlinear PCA (e.g. using kernel methods [11]). Finally,
for future work, NLPCA may be made more resistant to
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Fig. 6. The index IS from NLPCA (normalized by IS from the linear
PCA) for various values of the weight penalty parameter P , computed for
SST (solid ) and SAT (dashed).

outliers by replacing the L2 norm by an L1 in the objective
function, as is done in nonlinear regression by support vector
machines [12].

APPENDIX

With the input variables forming the 0th layer of the
network in Figure 2, a neuron v

(i)
j at the ith layer (i =

1, 2, 3, 4) receives its value from the neurons v(i−1) in the
preceding layer, i.e.

v
(i)
j = f (i)(w(i)

j · v(i−1) + b
(i)
j ) ,

where w(i)
j is a vector of weight parameters and b

(i)
j a bias

parameter, and the activation functions f (1) and f (3) are the
hyperbolic tangent functions, while f (2) and f (4) are simply
the identity functions. Effectively, a nonlinear function u =
F (x) maps from the higher dimension input space to the
lower dimension bottleneck space, followed by an inverse
transform x′ = G(u) mapping from the bottleneck space
back to the original space, as represented by the outputs.
To make the outputs as close to the inputs as possible, the
objective function J , basically the MSE, is minimized. More
precisely, [5] used

J = 〈‖x − x′‖2〉 + 〈u〉2 + (〈u2〉 − 1)2 + P
∑

j

‖w(1)
j ‖2 ,

where on the right hand side, the first term is the MSE (with
〈· · · 〉 denoting a sample or time mean), the second and third
terms are for restraining u towards 〈u〉 = 0 and 〈u2〉 =
1, and the final term is a weight penalty or regularization
term, with P the weight penalty parameter. [4] found that
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Fig. 7. The NLPCA solution (shown as densely overlapping circles) for
the SST anomaly data (dots), with P = 10−4. The solution is shown only
in the PC1-PC2 plane, though it is actually a curve in the 7-dimension space
spanned by the 7 leading PCs.
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Fig. 8. The NLPCA solution for the SAT anomaly data (dots), with P =
0.1, shown in the PC1-PC2 plane.

penalizing just the first layer of weights is sufficient to limit
the nonlinear modelling capability of the model. Through
nonlinear optimization, the values of the weight and bias
parameters are solved (see [5] for more details).
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