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Abstract

With very noisy data, having plentiful samples eliminates overfitting in nonlinear regression, but
not in nonlinear principal component analysis (NLPCA). To overcome this problem in NLPCA,
a new information criterion (IC) is proposed for selecting the best model among multiple models
with different complexity and regularization (i.e. weight penalty). This IC gauges the inconsistency
I between the nonlinear principal components (u and ũ) for every data point x and its nearest
neighbour x̃, with I = 1 − correlation(u, ũ), where I tends to increase with overfitted solutions.
Tests were performed using autoassociative neural networks for NLPCA on synthetic and real
climate data (tropical Pacific sea surface temperatures and equatorial stratospheric winds), with
the IC performing well in model selection and in deciding between an open curve or a closed curve
solution.
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1 Introduction

In principal component analysis (PCA), a given dataset is approximated by a straight line, which
minimizes the mean square error (MSE) — pictorially, in a scatterplot of the data, the straight
line found by PCA passes through the ‘middle’ of the dataset. In nonlinear PCA (NLPCA), the
straight line in PCA is replaced by a curve. NLPCA can be performed by a variety of methods, e.g.
the autoassociative neural network (NN) model (Kramer, 1991; Hsieh, 2004), and the kernel PCA
model (Schölkopf et al. 1998). Alternative approaches include the principal curves/surfaces method
(Hastie and Stuetzle, 1989; Hastie et al. 2001), and the self-organizing map technique (Kohonen,
1982) which can be regarded as a discrete version of NLPCA or principal curves/surfaces (Cherkassy
and Mulier, 1998).

When using nonlinear machine learning methods, the presence of noise in the data can lead to
overfitting (i.e. fitting to the noise). However, in the limit of infinite samples, overfitting is not a
problem when performing nonlinear regression on noisy data, since it can be shown that the output
of a flexible enough nonlinear regression model approximates the conditional mean of the target data
(Bishop, 1995, Sec. 6.1.3). While overfitting can also occur in NLPCA (Hsieh, 2001, Christiansen,
2005), the situation is actually far worse than in nonlinear regression, because even in the limit of
infinite samples, overfitting is a problem when applying NLPCA to noisy data. As illustrated in
Fig. 1, overfitting in NLPCA can arise from the geometry of the data distribution, instead of from
the relative scarsity of samples. Here for a Gaussian-distributed data cloud, a nonlinear model with
enough flexibility will find the zigzag solution of Fig. 1b as having a smaller MSE than the linear
solution in Fig. 1a. Since the distance between the point A and a, its projection on the NLPCA
curve, is smaller in Fig. 1b than the corresponding distance in Fig. 1a, it is easy to see that the
more zigzags there are in the curve, the smaller is the MSE. However, the two neighbouring points
A and B, on opposite sides of an “ambiguity” line (Hastie and Stuetzle, 1989; Malthouse, 1998),
are projected far apart on the NLPCA curve in Fig. 1b. Thus simply searching for the solution
which gives the smallest MSE is not a sufficient criterion for NLPCA to find the best solution in a
highly noisy dataset.

Regularization (e.g. the addition of weight penalty or decay terms in the objective functions
in NN models) has been commonly used to control overfitting by limiting model complexity (i.e.
the effective number of model parameters) via the size of the weight penalty parameter(s) (Bishop,
1995). A larger weight penalty parameter P tends to give less nonlinear solutions than a smaller P .
Typically, to find the appropriate P in nonlinear regression and classification, a number of models
are trained with different P values. The models’ MSE are validated on independent data not used
before in the model training stage, and the model with the lowest validated MSE is selected as the
best. Alternatively, Bayesian methods have been developed to automatically estimate the size of
the weight penalty parameter in nonlinear regression and classification problems (MacKay, 1992;
Foresee and Hagan, 1997).

As Kramer’s (1991) NLPCA model tends to extract zigzag solutions, Hsieh (2001) added weight
penalty to the NLPCA model, which brought the overfitting under control. Unfortunately, there
was no simple way to objectively estimate the appropriate P value needed to avoid overfitting (and
underfitting), because with NLPCA, if the overfitting arises from the data geometry (as in Fig. 1b)
and not from the relative scarsity of samples, using independent data to validate the MSE from
the various models is not a viable method for selecting the appropriate P . Instead, we propose
a new “inconsistency” index for detecting the projection of neighbouring points to distant parts
of the NLPCA curve, and incorporate the inconsistency index into an information criterion for
selecting the best model from a number of models ran with different P values and different model
architecture.
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In Sec. 2, the use of autoassociative NN models for NLPCA is outlined. In Sec. 3, the inconsis-
tency index and the information criterion are presented, and tested on synthetic data and tropical
Pacific sea surface temperature (SST) data. In Sec. 4, the information criterion is used to select
either a closed curve or an open curve as the best fit to a dataset, with applications to the equatorial
stratospheric wind data. Limitations of the NLPCA method are discussed in Sec. 5. More details
of the autoassociative NN models used are given in the Appendix.

2 Autoassociative NN model for NLPCA

To perform NLPCA, the NN model (Fig. 2a) is a standard feed-forward (multi-layer perceptron) NN
with 3 ‘hidden’ layers of variables or ‘neurons’ sandwiched between the input layer x on the left and
the output layer x′ on the right, where the middle hidden layer has only a single “bottleneck” neuron
u. As an autoassociative model, the MSE between the output x′ and the input x is minimized,
and data compression is achieved by the bottleneck, yielding the nonlinear principal component
(NLPC) u (see the Appendix for details). Model complexity can be increased by increasing m, the
number of hidden neurons in layer 1 and in layer 3 of the NN (Fig. 2a).

Using the Bayesian NN code trainbr.m (Foreseee and Hagan, 1997) in the MATLAB Neural
Network Toolbox to perform NLPCA failed to prevent the finding of zigzag solutions in Gaussian
data clouds, hence a different strategy is needed to choose the weight penalty parameter.

While the NLPCA is capable of finding a continuous open curve solution, there are many phe-
nomena involving waves or quasi-periodic fluctuations, which call for a continuous closed curve
solution. Kirby and Miranda (1996) introduced an NLPCA with a circular node at the network
bottleneck [henceforth referred to as the NLPCA(cir)], so that NLPCA(cir) is capable of approx-
imating the data by a closed continuous curve. Fig. 2b shows the NLPCA(cir) network, which is
identical to the NLPCA of Fig. 2a except at the bottleneck, where there are now two neurons p
and q constrained to lie on a unit circle in the p-q plane, so there is effectively only one free angu-
lar variable θ, the NLPC (see Appendix). This network has also been used to perform nonlinear
singular spectrum analysis (Hsieh and Wu, 2002).

Although NLPCA(cir) is designed for extracting closed curve solutions, it is also capable of
extracting an open curve solution. The reason is that if the input data mapped onto the p-q
plane covers only a segment of the unit circle instead of the whole circle, then the inverse mapping
from the p-q space to the output space will yield a solution resembling an open curve. Hence,
NLPCA(cir) may extract either a closed curve or an open curve approximation to a dataset. The
new information criterion will be used in Sec. 4 to choose between open and closed curves.

3 Information criterion for model selection

To introduce an inconsistency index for detecting the projection of neighbouring points to distant
parts of the NLPCA curve, we first find for each data point x its nearest neighbour x̃. The NLPC
for x and x̃ are u and ũ, respectively. With C(u, ũ) denoting the (Pearson) correlation between all
the pairs (u, ũ), the inconsistency index I is defined by

I = 1 − C(u, ũ) . (1)
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If for some nearest neighbour pairs, u and ũ are assigned very different values, C(u, ũ) would have
a lower value, leading to a larger I, indicating greater inconsistency in the NLPC mapping. With
u and ũ standardized to having zero mean and unit standard deviation, (1) is equivalent to

I =
1
2
〈(u − ũ)2〉 , (2)

where 〈· · · 〉 denotes averaging over all samples.
In statistics, various criteria, often in the context of linear models, have been developed to select

the right amount of model complexity so neither overfitting nor underfitting occurs. These criteria
are often called “information criteria” (IC), e.g. the Akaike (1974) IC, the Bayesian IC (Schwarz,
1978), etc. An IC is typically of the form

IC = MSE + complexity term, (3)

where MSE is evaluated over the training data and the complexity term is larger when a model has
more free parameters. The IC is evaluated over a number of models with different free parameters,
and the model with the minimum IC is selected as the best. As the presence of the complexity
term in the IC penalizes models which use excessive number of free parameters to attain low MSE,
choosing the model with the minimum IC would rule out complex models with overfitted solutions.

Due to the presence of multiple minima in the objective function, we randomly divide the
data into a training data set and a validation set (containing 85% and 15% of the original data,
respectively, in the following examples), and for every given value of P and m, we train the model
a number of times from random initial weights, and discard model runs where the MSE evaluated
over the validation data is larger than the MSE over the training data. To choose among the model
runs which have passed the validation test, a new holistic IC to deal with the type of overfitting
arising from the broad data geometry (Fig. 1b) is introduced as

H = MSE + inconsistency term (4)
= MSE − C(u, ũ) × MSE = MSE × I , (5)

where MSE and C are evaluated over all (training and validation) data, inconsistency is penalized,
and the model run with the smallest H value is selected as the best. Note that as the inconsistency
term only prevents overfitting arising from the broad data geometry, validation data were still
needed to prevent “local” overfitting from excessive number of model parameters, since H, unlike
(3), does not contain a complexity term.

A test problem was set up as follows: For a random number t uniformly distributed in the
interval (−1, 1), the signal x(s) was generated by using a quadratic relation

x
(s)
1 = t, x

(s)
2 =

1
2

t2. (6)

Isotropic Gaussian noise (with variance being one half the average variance of x
(s)
1 and x

(s)
2 ) was

then added to the signal x(s) to give the noisy data x with 500 samples. NLPCA was performed
on the data using the network in Fig. 2a with m = 4 and with the weight penalty parameter P at
various values (10, 1, 10−1, 10−2, 10−3, 10−4, 10−5, 0). For each value of P , the model training was
done 30 times starting from random initial weights, and model runs where the MSE evaluated over
the validation data was larger than the MSE over the training data were deemed ineligible. In the
traditional approach, among the eligible runs over the range of P values, the one with the lowest
MSE over all (training and validation) data was selected as the best. Fig. 3a shows this solution
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where the zigzag curve retrieved by NLPCA is very different from the theoretical parabolic signal
(6), demonstrating the pitfall of selecting the lowest MSE run.

In contrast, in Fig. 3b, among the eligible runs over the range of P values, the one with the
lowest information criterion H was selected. This solution, which has a much larger weight penalty
(P = 0.1) than that in Fig. 3a (P = 10−4), shows less wiggly behaviour and better agreement with
the theoretical parabolic signal.

Even less wiggly solutions can be obtained by changing the error norm used in the objective
function from the mean square error to the mean absolute error (MAE), i.e. replacing 〈‖x−x′‖2〉 by
〈
∑

j |xj − x′
j |〉 in Eq. (A.2). The MAE norm is known to be robust to outliers in the data (Bishop,

1995, p. 210). Fig. 3c is the solution selected based on minimum H with the MAE norm used.
While wiggles are eliminated, the solution underestimates the curvature in the parabolic signal.
The rest of this paper uses the MSE norm.

The H IC approach was also tested on a real climate dataset, the tropical Pacific SST, where the
interannual variability is dominated by the El Niño-Southern Oscillation (ENSO) phenomenon. The
monthly SST data on a 2◦×2◦ grid for the period 1948-2005 came from the Extended Reconstructed
Sea Surface Temperatures (ERSST version 2) dataset (Smith and Reynolds, 2004) (downloadable
from ftp.ncdc.noaa.gov/pub/data/ersst-v2). The SST anomalies were obtained by subtracting
the climatological seasonal cycle. PCA was performed on the SST anomalies in the tropical Pacific
domain of 124◦E-70◦E, 20◦S-20◦N. The 7 leading principal components (PC) containing 86.5% of
the variance were retained, and served as the inputs for the NLPCA model. Fig. 4 shows the three
leading PC time series. In the first PC, the peaks and troughs correspond, respectively, to warm (El
Niño) and cool (La Niña) episodes, while PC2 tends to peak during both warm and cool episodes.
The SST anomaly spatial patterns from the three leading empirical orthogonal functions (EOF)
(i.e. loadings) are shown in Figs. 5 a, b and c. The contribution to the SST anomaly field from a
given PCA mode at a particular time is the PC at that time multiplied by the corresponding EOF
spatial pattern.

NLPCA was performed over a range of m and P values (m = 2, . . . , 6, and P =10, 1, 10−1,
10−2, 10−3, 10−4, 10−5, 0). For each combination of m and P , 100 runs starting from random inital
weights were made. Among all the runs made over the whole range of m and P values, the one
with the lowest H was selected as the best (with m = 5, P = 0). The NLPCA solution is a curve
in the 7-dimensional PC space. Fig. 6 displays this solution in the PC1-PC2-PC3 space, while Fig.
5 d and e show the SST anomaly field when the NLPC u is at its maximum and minimum values,
respectively. The u time series has a correlation of 0.983 with PC1, hence strong El Niño episodes
occur when u and PC1 are near their maximum, and strong La Niña episodes, when near their
minimum. Comparing Fig. 5a and Fig. 5d, we note that during strong El Niño, the NLPCA mode
1 has warmer SST anomalies near the eastern boundary than the PCA mode 1. The strong La
Niña pattern in NLPCA mode 1 (Fig. 5e) has the strongest cool anomalies in the central equatorial
Pacific, far from the eastern boundary, in contrast to the strong El Niño situation (Fig. 5d), where
the strongest warm anomalies are near the eastern boundary. These patterns are somewhat similar
to those found in Monahan (2001) and Hsieh (2001).

We next compare the best solutions found for different hidden neuron number m. Since the
overall best solution based on minimum H was for m = 5, we also showed the best solution found
for m = 2 and m = 6 in the PC1-PC2 plane (Fig. 7). The (normalized) MSE for the 3 solutions in
Fig. 7 are 0.898 (m = 2), 0.857 (m = 5) and 0.826 (m = 6), where for easy comparison with the
linear mode, the values for the NLPCA solution have been divided by that from the PCA mode
1. For the (normalized) inconsistency index I, the values are 0.896 (m = 2), 0.879 (m = 5) and
0.946 (m = 6), while for the (normalized) H IC, the corresponding values are 0.804, 0.753 and
0.782 respectively. Hence the m = 6 solution has a lower MSE than the m = 5 solution, but the
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increased inconsistency from its wiggly curve (Fig. 7c) led to a larger I and a larger H. Compared
to the m = 2 solution, the m = 5 solution has both lower MSE and lower I.

4 Closed curve solutions

In many oscillatory systems, there are two extreme states, e.g. winter and summer. Depending
on the variable, the intermediate states, e.g. spring and autumn, may or may not be similar. For
instance, in temperature, spring and autumn are similar, but in the colour of forests, the two
seasons are very distinct. Thus in the former case, an open curve is most suited to describe the
main oscillation in the data, while in the latter, a closed curve is most suited. The NLPCA(cir)
model (Fig. 2b) is capable of representing either a closed or an open curve. It is shown below that
the IC H not only alleviates overfitting in open curve solution, but also chooses between open and
closed curve solutions. The inconsistency index and the IC are now obtained from

I = 1 − 1
2

[C(p, p̃) + C(q, q̃)] , and H = MSE × I , (7)

where p and q are from the bottleneck (Fig. 2b), and p̃ and q̃ are the corresponding nearest neighbour
values.

For a test problem, we chose a Gaussian data cloud (with 500 samples) in 2-dimensional space,
where the standard deviation along the x1 axis was double that along the x2 axis. The data set
was analyzed by the NLPCA(cir) model with m = 2, . . . , 5 and P = 10, 1, 10−1, 10−2, 10−3, 10−4,
10−5, 0. From all the runs, the solution selected based on the minimum MSE has m = 5 (and
P = 10−5) (Fig. 8a), while that selected based on minimum H has m = 3 (and P = 10−5) (Fig.
8b). The minimum MSE solution has (normalized) MSE = 0.370, I = 9.50 and H = 3.52, whereas
the minimum H solution has the corresponding values of 0.994, 0.839 and 0.833, respectively. Thus
the IC correctly selected a nonlinear solution (Fig. 8b) which is similar to the linear solution. It
also rejected the closed curve solution of Fig. 8a, in favour of the open curve solution of Fig. 8b,
despite its much larger MSE.

For a second test problem, we choose an oval signal imbedded in low and high Gaussian noise
in 2-dimensional space. Again runs with m = 2, . . . , 8 and P ranging from 10 to 0 were performed,
with the H IC selected solutions shown in Fig. 9. Thus in contrast to the Gaussian example (Fig.
8b), the IC selected a closed curve solution even under heavy noise (Fig. 9b).

For an application on real data, we turn to the quasi-biennial oscillation (QBO) which dominates
over the annual cycle or other variations in the equatorial stratosphere, with the period of oscillation
varying roughly between 22 and 32 months, with a mean of about 28 months. Average zonal (i.e.
westerly) winds (Naujokat, 1986) at 70, 50, 40, 30, 20, 15 and 10 hPa (i.e. from about 20 km to
30 km altitude) during 1956-2006 were studied. After the 51-year means were removed, the zonal
wind anomalies U at 7 vertical levels in the stratosphere became the 7 inputs to the NLPCA(cir)
network (Hamilton and Hsieh, 2002). Since the data were not very noisy (Fig. 10), a rather complex
model was tried here, with m ranging from 5 to 9, and P = 10−1, 10−2, 10−3, 10−4, 10−5, 0. The
smallest H occurred when m = 8 and P = 10−5, with the closed curve solution shown in Fig.
10. Thus in this example, by choosing a rather large m and a small P , the H IC justified having
considerable model complexity, including the wiggly behaviour seen in the 70 hPa wind (Fig. 10c).
The wiggly behaviour can be understood by viewing the phase-pressure contour plot of the zonal
wind anomalies (Fig. 11): As the easterly wind anomaly descends with time (i.e. as phase increases),
wavy behaviour is seen in the 40, 50 and 70 hPa levels at θweighted around 0.4-0.5. This example
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demonstrates the benefit of having an IC to objectively decide on how smooth or wiggly the fitted
curve should be.

5 Summary and Discussion

With noisy data, not having plentiful samples could cause a flexible nonlinear model to overfit. In
the limit of infinite samples, overfitting cannot occur in nonlinear regression, but can still occur
in NLPCA due to the geometric shape of the data distribution. A new inconsistency index I for
detecting the projection of neighbouring points to distant parts of the NLPCA curve has been
introduced, and incorporated into a holistic IC H to choose the model with the appropriate weight
penalty parameter and the appropriate number of hidden neurons. Tests with synthetic data and
real climate data indicated that this IC is effective in model selection, and in deciding between
open curve and closed curve solutions. The MATLAB code is downloadable from http://www.
ocgy.ubc.ca/projects/clim.pred/download.html. Although the NLPCA was performed with
autoassociative NN models, this IC for NLPCA model selection should work with other methods
for nonlinear PCA.

While this H IC worked well in climate datasets where there is one dominant signal (e.g. ENSO
in the tropical Pacific SST; QBO in the stratospheric wind), it remains inadequate for dealing with
datsets which contain two or more distinct signals of roughly comparable strength – e.g. in the
extratropical N. Hemisphere climate, where there has been considerable controversy on the use of
NLPCA (Christiansen, 2005; Monahan and Fyfe, 2007; Christiansen, 2007), there are two signals
of comparable magnitude, the Arctic Oscillation and the Pacific-North American teleconnection.
The reason is that if there are two comparable signals, the total signal forms a 2-D surface whereas
our NLPCA or NLPCA(cir) model will be trying to fit a 1-D curve to this surface, resulting in a
hybrid mode with attributes from both signals. While it is possible to have two neurons in the
bottleneck layer in the NLPCA network (Fig. 2a), so that a 2-D solution is extracted, there is no
simple way to separate the two signals. Clearly more research is needed in developing NLPCA and
IC for such complicated noisy datasets.
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plotting package, Alex Cannon for useful discussion on robust error norms, and Kevin Hamilton
for sending the stratospheric zonal wind data provided by Barbara Naujokat of the Free University
of Berlin. This work was supported by Discovery and Strategic grants from the Natural Sciences
and Engineering Research Council of Canada, and a project grant from the Canadian Foundation
for Climate and Atmospheric Sciences.
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Appendix

With the input variables forming the 0th layer of the network in Fig. 2a, a neuron v
(i)
j at the ith

layer (i = 1, 2, 3, 4) receives its value from the neurons v(i−1) in the preceding layer, i.e.

v
(i)
j = f (i)(w(i)

j · v(i−1) + b
(i)
j ) , (A.1)

where w(i)
j is a vector of weight parameters and b

(i)
j a bias or offset parameter, and the transfer

or activation functions f (1) and f (3) are the hyperbolic tangent functions, while f (2) and f (4) are
simply the identity functions. Effectively, a nonlinear function u = F (x) maps from the higher
dimension input space to the lower dimension bottleneck space, followed by an inverse transform
x′ = G(u) mapping from the bottleneck space back to the original space, as represented by the
outputs. To make the outputs as close to the inputs as possible, the objective function J , basically
the MSE, is minimized. More precisely, Hsieh (2004) used

J = 〈‖x − x′‖2〉 + 〈u〉2 + (〈u2〉 − 1)2 + P
∑

j

‖w(1)
j ‖2 , (A.2)

where on the right hand side, the first term is the MSE (with 〈· · · 〉 denoting a sample or time
mean), the second and third terms are for restraining u towards 〈u〉 = 0 and 〈u2〉 = 1, and the final
term is a weight penalty or regularization term, with P the weight penalty parameter. Hsieh (2001)
found that penalizing just the first layer of weights is sufficient to limit the nonlinear modelling
capability of the model. By minimizing J , the values of the weight and bias parameters are solved.
In this paper, the nonlinear optimization was carried out by the quasi-Newton algorithm fminu.m
in the MATLAB Optimization Toolbox. A number of optimization runs was made with random
initial values of the weight and bias parameters, and only runs where the MSE evaluated over the
validation data was not larger than the MSE over the training data were deemed eligible, with the
best solution selected as the one with the smallest value of H, calculated from (5).

To obtain closed curve solutions, we use NLPCA with a circular bottleneck node (Fig. 2b). At
the bottleneck, we first calculate the pre-states po and qo by

po = w(2)
1 · v(1) + b

(2)
1 , and qo = w(2)

2 · v(1) + b
(2)
2 , (A.3)

then with

r = (p2
o + q2

o)
1/2 , (A.4)

the circular node is defined by

p = po/r , and q = qo/r , (A.5)

which satisfies the unit circle equation p2 + q2 = 1. Thus, although there are two variables p and
q at the bottleneck, there is only one angular degree of freedom (θ) from the circle constraint. For
more details, see the review by Hsieh (2004). The model run having the smallest H, as computed
from (7), is selected as the best solution.
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Figure 1: Schematic diagram illustrating how overfitting can occur in NLPCA of noisy data (even
in the limit of infinite samples). (a) PCA solution for a Gaussian data cloud (shaded in grey), with
two neighbouring points A and B shown projecting to the points a and b on the PCA straight line
solution. (b) A zigzag NLPCA solution found by a flexible enough nonlinear model. Dashed lines
illustrate “ambiguity” lines where neighbouring points (e.g. A and B) on opposite sides of these
lines are projected to a and b, far apart on the NLPCA curve.
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Figure 2: (a) A schematic diagram of the autoassociative feed-forward multi-layer perceptron NN
model for performing NLPCA. Between the input layer x on the left (the 0th layer) and the output
layer x′ on the far right (the 4th layer), there are 3 layers of ‘hidden’ neurons (the 1st, 2nd and 3rd
layers). Layer 2 is the ‘bottleneck’ with a single neuron u giving the nonlinear principal component
(NLPC). Layers 1 and 3 each have m hidden neurons. (b) The NN model used for extracting a
closed curve NLPCA solution. At the bottleneck, there are now two neurons p and q constrained
to lie on a unit circle in the p-q plane, giving effectively one free angular variable θ, the NLPC.
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Figure 3: The NLPCA solution (shown as densely overlapping black circles) for the synthetic
dataset (dots), with the parabolic signal curve indicated by “+” and the linear PCA solution by
the dashed line. The solution was selected from the multiple runs over a range of P values based
on (a) minimum MSE, (b) minimum IC H, and (c) minimum IC together with the MAE norm.
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Figure 4: The three leading PC time series (accounting respectively for 56.3%, 10.6% and 7.9%
of the variance) of the tropical Pacific SST anomaly data. The tick mark for a year marks the
January of that year.
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Figure 5: The tropical Pacific SST anomaly field associated with (a) PCA mode 1, (b) PCA mode
2, (c) PCA mode 3, and NLPCA mode 1 when the NLPC u is (d) maximum and (e) minimum. In
(a), (b) and (c), the EOF was multiplied by the maximum value of the corresponding PC. Negative
contours are dashed, and zero contours thickened.
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Figure 6: The NLPCA mode 1 of the SST anomaly data plotted as (overlapping) squares in the
PC1-PC2-PC3 3-D space. The linear (PCA) mode 1 is also shown as a dashed line. The NLPCA
mode and the PCA mode are also projected onto the PC1-PC2 plane, the PC1-PC3 plane, and the
PC2-PC3 plane, where the projected NLPCA solution is indicated by (overlapping) circles, and the
PCA by thin solid lines, and the projected data points (during 1948-2005) by the scattered dots.
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Figure 7: The best NLPCA mode 1 solution (for the SST anomaly data) selected for (a) m = 2
(b) m = 5 and (c) m = 6. The solution is shown only in the PC1-PC2 plane, with the linear PCA
mode 1 solution indicated by the dashed line.
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Figure 8: The NLPCA(cir) mode 1 for a Gaussian dataset, with the solution selected based on (a)
minimum MSE and (b) minimum IC. The PCA mode 1 solution is shown as a dashed line.
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Figure 9: The NLPCA(cir) mode 1 (overlapping black circles) for the dataset containing an oval-
shaped signal (indicated by “+”) under (a) low noise and (b) high noise. In (a) the circles and “+”
signs strongly overlapped.
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Figure 10: The NLPCA(cir) mode 1 solution for the equatorial stratospheric zonal wind anomalies.
For comparison, the PCA mode 1 solution is shown by the dashed line. Only 3 out of 7 dimensions
are shown, namely the zonal velocity anomaly U at the top, middle and bottom levels (10, 30 and
70 hPa). Panel (a) gives a 3-D view, while (b)-(d) give 2-D views.
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Figure 11: Contour plot of the NLPCA(cir) mode 1 zonal wind anomalies as a function of pressure
and phase θweighted, where θweighted is θ weighted by the histogram distribution of θ (see Hamilton
and Hsieh, 2002). Thus θweighted is more representative of actual time during a cycle than θ.
Contour interval is 5 ms−1, with westerly winds indicated by solid lines, easterlies by dashed lines,
and zero contours by thick lines.


