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Abstract. Robust variants of nonlinear canonical correlation CCA is a linear model and is thus unable to describe non-
analysis (NLCCA) are introduced to improve performancelinear relationships between datasets. To nonlinearlggen
on datasets with low signal-to-noise ratios, forexampbséh  alize CCA, various approaches, based on artificial neutal ne
encountered when making seasonal climate forecasts. Theork and kernel methods, have been proposed (Lai and Fyfe,
neural network model architecture of standard NLCCA is 1999; Hsieh, 2000; Lai and Fyfe, 2000; Suykens et al., 2002;
kept intact, but the cost functions used to set the model paMelzer et al., 2003; Shawe-Taylor and Cristianini, 2004y. F
rameters are replaced with more robust variants. The Pearsdnstance, Hsieh (2000) used three feed-forward (multeday
product-moment correlation in the double-barreled neltwor perceptron) neural network mappings to perform nonlinear
is replaced by the biweight midcorrelation, and the meanCCA (NLCCA). This method has been applied to climate re-
squared error (mse) in the inverse mapping networks can beearch, for analyzing the structure of the El Nifio-Souther
replaced by the mean absolute error (mae). Oscillation (ENSO) (Hsieh, 2001; Wu and Hsieh, 2002) and
Robust variants of NLCCA are demonstrated on a syn-its interdecadal changes (Wu and Hsieh, 2003), and for de-
thetic dataset and are used to forecast sea surface tempdermining the midlatitude atmospheric response to trdpica
atures in the tropical Pacific Ocean based on the sea levd?Pacific sea surface temperature (SST) variability (Wu et al.
pressure field. Results suggest that adoption of the bi2003). Operational NLCCA forecasts of SST in the equa-
weight midcorrelation can lead to improved performance, es torial Pacific Ocean are also made available by the Climate
pecially when a strong, common event exists in both predic-Prediction Group of the University of British Columbia (see
tor/predictand datasets. Replacing the mse by the mae leadg t p: / / www. ocgy. ubc. ca/ proj ects/clim pred/ for
to improved performance on the synthetic dataset, but not ommore details).
the climate dataset except at the longest lead time, whighsu  While able to describe coupled nonlinear variability, this
gests that the appropriate cost function for the inverse-maprather complicated NLCCA model is prone to overfitting
ping networks is more problem dependent. (i.e., fitting to the noise rather than the signal), paraciyl
when applied to the short, noisy datasets common in climate
studies. This prompted the development of simpler multi-
variate nonlinear models such as nonlinear projection (Wu
and Hsieh, 2004), which maps a univariate predictor to a
Canonical correlation analysis (CCA) is a multivariatefin multlvanate p_redlctand dataset, and_ nonlinear prlnqq_nal .
model used to find the modes of maximum correlation be-d'Cto_r analysis (Cannon, 2_00(.5)' whlch_maps a mu|t|yar|ate
tween two sets of variables (von Storch and Zwiers, 1999)_pr_e_d|ct_o r datas_et to a multivariate prgdlctand datasetlevh
CCA was first popularized as a tool for prediction in the at- m|t|g§1t!ng the mfluc_ance of short, noisy datasets on r_nodel
mospheric sciences by Glahn (1968) and has since been us&yerflttlng by reducing the number of neural networks in the

extensively in climatology, particularly for seasonal der mogt_ali nelthelr ’?0”"”6"’“ prolectllon :loLr(:réo:Imear priatip
casting (Barnett and Preisendorfer, 1987; Barnston and RoPredictor analysis are as general as )

1 Introduction

pelewski, 1992: Shabbar and Barnston, 1996). The main goal of this paper is the development of a robust
version of NLCCA that can successfully operate on datasets
Correspondenceto: A.J. Cannon with low signal-to-noise-ratios. The basic model architec

(alex.cannon@ec.gc.ca) ture chosen by Hsieh (2000) is kept intact. Instead, the cost
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functions used to set the model parameters are replaced with
more robust versions. A cost function based on the biweight X
midcorrelation replaces one based on the Pearson (product-
moment) correlation and cost functions based on lthe
norm (i.e., mean absolute error, mae) replace ones based on
the Lo-norm (i.e., mean squared error, mse). Robust variants
of NLCCA are demonstrated on a synthetic dataset and are
used to forecast SSTs in the tropical Pacific Ocean based on
sea level pressure (SLP) data.

2 Method
2.1 NLCCA

Consider a datasefz;(t)} with 7 variables and another
dataset{y;(t)} with j variables, where each dataset has
t =1,...,N samples. The variablgs;(t)} can be grouped
to form the vectorx(t) and the variableqy;(¢)} can be
grouped to form the vectay(t). CCA looks for the linear
combinations

u(t) = a-x(t), v(t) =b-y(t) 1) _ _
Fig. 1. Neural network architecture used to perform NLCCA.
such that the Pearson correlation between the canonidal var
atesu andv, i.e., cofu, v), is maximized. If, for example,
x is a gridded SLP dataset agdis a gridded SST dataset, (k = 1,..,K,K > 2andl =1,..,L,L > 2) to obtain a
then the vectora andb represent correlated spatial patterns nonlinear solution (Hsieh, 2001).
corresponding to the SLP and SST fields respectively. Un- Weight and bias parameters in the double-barreled net-
like linear regression, which looks for relationships be¢ww ~ Work are set by minimizing the cost function
a predictor dataset (e.gx) and each of the predictands (e.qg.,
y;) separately, CCA takes a holistic approach and looks for ) )
rela_tlonshlps .be.twe.en .each of the sets of vanaples in thelrc1 = —cor(u, v) + <u>2 + <v>2 + (<u2>§ _ 1) +
entirety. No distinction is made between the two fields; each
can act interchangeably as predictors or predictands. N 2 2 2
In NLCCA, the nonlinear analog of linear CCA, the linear (<v2>§ — 1) + P Z (Wéf)) + Z (Wl(f’)) (3)
mappings in Eg. (1) are replaced with nonlinear mappings ki lj
performed by neural networks. The neural network architec-
ture for NLCCA is shown in Figure 1. The double-barreled where(-) denotes the sample or temporal mean. The first
network on the left-hand side nonlinearly mapt « andy term maximizes the correlation between the canonical vari-
tov by atesu andv; the second, third, fourth, and fifth terms are
normalization constraints that forae and v to have zero
~ mean and unit variance; the sixth term is a weight penalty
h,(f) = tanh[(W@x + b@);], u = w® . h® 4 p®) whose relative magnitude is controlled by the paramBter
hl(y) _ tanh[(W(y)y + b(”))zL v=w® . h® 4 L.argervalues of’; lead to sr_nallerweights (i.e., fgwer effec-
tive model parameters), which results in a more linear model
(2) If tanh(-) is replaced by the identity function, then Eq. (2)
reduces to Eq. (1) and the network performs linear CCA.
Once the canonical variatesandv have been found, the
inverse mappings t& andy are given by the two neural
networks on the right-hand side of Figure 1:

whereh(") andh") are the hidden-layer nodesinh(-) is
the hyperbolic tangent functiorv(*) and W) are the
hidden-layer weight matrice$i*) andb(®¥) are the hidden-
layer bias vectorsy (*) andw () are the output-layer weight
vectors; () and b® are the output-layer biases; and
and! are indices of the vector elements. The number th(“) ol (w® b % - WOR® LB (4
hidden-layer nodes controls the overall complexity of the' ' — 'A% (W u+ D)), X = w T (4)
network; the hidden-layer must contain more than one nodeh\*) = tanh[(w(®v + b(®),], § = W®h® + b®). (5)
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Weight and bias parameters in these two networks aremean, expected deviation from the mean, and covariance) are

found by minimizing the cost functions replaced by robust measures. The biweight midcorrelation
) can also be used to predietfrom v (and vice versa) in a
O, = <”§ _ x”2> ) Z (wliu)) (6) manner similar to Eq. (9) for the standard NLCCA model,
= which is not possible with the Spearman rank correlation.
To calculate the biweight midcorrelation function
2 . . .
Oy — <||§ B y”2> 4P Z (wl(v)) @) bicor(z, y), first rescaler andy by
l T — Afw Yy — MTI
P=oan o 9= : (10)
respectively, wherd-|| is the square of thé,-norm, with IMAD. IMAD,
the L,-norm given by where M, and M, are the median values of andy re-
1p spectively and MAR and MAD, are the median values of
B m1/p P | — M| and|y — M,| respectively. Next, the sample bi-
Lp(e) = (llell")" = <Z lei] ) ‘ (8) weight midcovariance is given by
Cs and(Cs thus give the mse between the neural network pre-
dictions and the observedandy variables subject to weight PICOMz; ¥) =
penalty terms whose magnitudes are controlled by the pa- N >, a(t)b(t)c(t)*d(t)*(z(t) — M) (y(t) — M) (11)

rametersP, and P;. Once the first mode has been extracted (3, a(t)c(t)(1 — 5p(t)2)) (32, b(t)d(t)(1 — 5q(t)?))
from the data, the next leading mode can be extracted from _ _
the model residuals, and so on for higher modes. wherea(t) = 1if —1 < p(t) < 1, otherwisea(t) = 0;
For seasonal climate prediction tasks, where the goal i(t) = 1if —1 < ¢() <1, otherwiseh(t) = 0; ¢(t) = (1 —
to predict values of a multivariate predictand dataset fromp(t)®); andd(t) = (1 — q(t)?). The biweight midcorrelation
a multivariate predictor dataset, e.§.,= f(x), values of is thengiven by
the canonical variate must be predicted from values of the .
; . . : : - bicov(z, y)
canonical variate. For canonical variates normalized to unit bicor(z, y) = — _ ,
variance and zero mean, the linear least-squares regressio v/bicov(z, ) bicov(y, y)
solution is given by

(12)

The biweight midcorrelation, like the Pearson correlation

5 = u cor(u, v) (9) ranges from -1 (negative association) to +1 (positive asso-

ciation).
(von Storch and Zwiers, 1999, pg. 325). Figure 2 shows estimates of the Pearson correlation and
the biweight midcorrelation between normally distributed
2.2 Biweight midcorrelation random variables: ~ N(0,1) andy ~ N(0,1) and be-

tweenz’ andy, wherez’ is the same as but with one case
The Pearson correlation is not a robust measure of associaeplaced by an outlier (Figure 2a). On the outlier-free setta
tion between two variables, as its estimates can be affectegoth cofz, ) and bicofz, y) give approximately equal es-
by the presence of a single outlier (Wilcox, 2004). For short timates of the strength of association between the vasable
noisy datasets the cost functiéh [Eq. (3)] in the NLCCA  (Figure 2b). Estimates of car’, ) are strongly affected
model may lead to overfitting as the model attempts to maxy the outlier, showing almost no association between galue
imize the correlation between the canonical variates by gencalculated with and without the outlying data point (Figure
erating mappings betweenandu andy andv thatare more  2¢), whereas estimates of bi¢ot, y) are essentially unaf-
complicated than necessary due to outliers. Rather than usected by the outlier (Figure 2d).
ing the Pearson correlation, a more robust measure of asso- NLCCA with the Pearson correlation cost function may
ciation could instead be adopted in the cost function tocavoi fail when outliers occur simultaneously in both datasets. T
this problem. illustrate, consider two identical sinusoidal series heaith

Robust correlation coefficients, including commonly used a common outlier

functions like the Spearman rank correlation, are reviduyed
Wilcox (2004). Trials with the Spearman rank correlation re
sulted in models with poor convergence properties and inconz(t) = y(t) = sin(0.5¢) + 6(¢), where
sistent performance on real-world climate datasets. &dste 6att =150
the biweight midcorrelation (Wilcox, 2004) was selected as o(t) = {0 elsewhere
a robust alternative to the Pearson correlation. The biuteig
midcorrelation is calculated in the same manner as the Peawheret = 1,2, ..., 300. Next, create new serias$ andy’ by
son correlation coefficient, except non-robust measuhes (t adding noise drawn fronV (0, 0.5) to z andy. The expected

(13)
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Fig. 2. Empirical comparison between the Pearson correlatior) (cor
and the biweight midcorrelation (bicor) on random variahleand

y, each with samples drawn from a standard normal distributio
andz’ andy, wherez’ is the same as but with one case replaced
with an outlier. Panel (a) shows sample time series’ofsolid)
andy (dashed); (b) compares ¢at y) and bico(z, y); (c) com-
pares cofz, y) and cofz’, y); and (d) compares bicpr, y) and
bicor(z’, y). Plots are for 1000 randomly generated datasets.

Fig. 3. Time series ofu with (a)p = 1 and (b)p = 9; outliers in

v occur at the same time as thoseuin(c) The effect on cdu, v)
(solid line) and bicofu, v) (dashed line) from increasing the sepa-
ration between common outlier and non-outlier points byaasing

) squares estimate for the regression coefficient is givergpy E
values of cofz’, y') and bicotz’, y') are found to be 0.71  (9). Similarly, the biweight midcorrelation is associateith
and 0.68 respectively. Now, consider values ofaow) and 5 ropust regression model that can be used to predict val-
bicor(u, v), whereu = 2’7, v = y'7, andp is an odd integer ;65 of one canonical variate from the other. Following Lax

(Figure 3a). Increasing the value pfeffectively increases (1985) and Hou and Koh (2004), the biweight midregression
the separation between the outlier and the non-outliegs (Fi go|ution is given by

ure 3b). Values of cat, v) and bicofu, v) for values of

p from 1 to 9 are shown in Figure 3c. The Pearson cor-v = u bicor(u, v) (14)
relation can be increased simply by increasingvhereas
the biweight midcorrelation decreasesyamcreases. This
case illustrates how increasing the nonlinearity of the map
ping functionsu andv (by increasingp) can lead to very 5 3 L,-norm

high Pearson correlation.

In the context of NLCCA, spuriously high values of Now consider the inverse maping fromandv back tox
cor(u, v) can be found by the double-barreled network whenandy (i.e., the networks on the right hand side of Figure 1).
the nonlinear neural network mapping greatly magnifies anThe L,,-norm given in Eq. (8) forms the basis for a class of
outlier in bothz andy. This artifact can be particularly dan- cost functions used in regression models (Bishop, 1995). Of
gerous when NLCCA is applied to datasets that are affectedhese, thd_,-norm, which leads to the mse cost function, is
by strong, concurrent climate signals, for example those wi commonly used in statistical models. Models that minimize
large El Nifio or La Nifia anomalies, as shown by Hsiehthe mse are optimal if the data are generated from a deter-
(2001). NLCCA performed worse than CCA when weight ministic function corrupted by a normally distributed reis
penalty terms were not used to reduce the nonlinearity of theprocess with constant variance. However, a potential prob-
double-barreled network. Based on results shown in Figurdem exists with cost functions based on thg-norm (e.g.,

3, adopting bicor in the cost function should prevent this ar C> andC5 defined in Egs. 6 and 7). Samples with the great-
tifact. est errors exert disproportionately large influence on tst ¢

When NLCCA models are used for multivariate predic- function. Thus, a small number of outliers can come to dom-
tion, a regression model is needed to estimafi®m « (and inate the solution. Adopting thie;-norm, which leads to the
vice versa). For the standard NLCCA model, the linear leastmae cost function, reduces the influence of outliers.

for canonical variates normalized to unit variance and zero
mean.
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(a) x with 50% added noise

Bishop (1995, Sec. 6.1-6.2) showed that in the limit of in-
finite samples and with a flexible enough model (e.g., a neu-
ral network with enough hidden nodes), the model converges
to the conditional mean if the mse is used and the conditional
median if the mae is used. The median is robust to outliers
whereas the mean is not.

2.4 Robust NLCCA

Robust variants of NLCCA use the model architecture shown
in Figure 1 but with the cost functiors;, C3, andCj re-
placed by the robust versions described in Sections 2.2 and
2.3. The biweight midcorrelation replaces the Pearsoreeorr
lation in C; and the mae replaces the mse&nandCs.

3 Synthetictest problem
3.1 Data

To illustrate the effect of the changes to the NLCCA cost
functions, consider the three dimensional synthetic tesip
lem used by Hsieh (2000) to introduce the standard NLCCA
model. The first correlated mode &ndy) is given by

1 =t—0.3t%, zo=1t+0.3t2, x3=1> (15)
yr =13, yo = —t+0.3t3, y3 =1t +0.3t° (16)

wheret is a uniformly distributed random number[in1, 1].
The second correlated mode€ @ndy’) is given by

Fig. 4. Synthetic test datasets used to evaluate the performance of
the standard and robust NLCCA models. The first mode is shown
by the thick black curve and the second mode is shown by the thi
black curve. Test samples with added noise are shown assster

r) = —5—-03s% 2h=5-0.3s 2 =—s a7
y, = sech{ds), yh=s+0.3s> yh=s—0.3s> (18)

wheres is a uniformly distributed random numberfin1, 1].

The shapes described kyandx’ are shown in Figure 4a and . . L

those described by andy’ are shown in Figure 4b. gradlent a_md Hessian was used tq minimize the cqst func-
To test the performance of the NLCCA models, 50 training 1ONS- While theL, norm is not continuously differentiable,

and test datasets, each with 500 samples, were randomly geROnVergence problems were not noted during optimization.

erated from Egs. (15)-(18). The signal in each dataset wad N€ L1 norm can, however, be approximated by the Huber

produced by adding the second mode to the first mode, witorm, which is continuously dl.ffe.rentlable, if issues Wlth.

the variance of the second equal to one third that of the firstconvergence are found (Panayiotis et al., 2006). To avoid

Normally distributed random noise with standard deviation'°c&! minima in the error surface, each network in Figure 1

equal to 50% of the signal standard deviation was added tgvas trained 30 times, each time starting from a different ran

the data. The variables were then standardized to zero med#P™MIy Selected set of initial weights and biases. The neéwor
and unit standard deviation. with the lowest value of its associated cost function waa the

selected for use and applied to the test data.
3.2 Training and testing procedure

3.3 Model performance
NLCCA models with different combinations of the non-
robust (cor and mse) and robust (bicor and mae) cost funcRoot mse (rmse) values between the first synthetic mode
tions were developed on the training datasets and applied tand the first mode extracted by NLCCA models with dif-
the test datasets. Following Hsieh (2000), all neural ngtavo  ferent combinations of non-robust and robust cost funstion
had three nodes in their hidden-layers and were trained withare shown in Figure 5 for the 50 test datasets. On average,
out weight penalty terms. A quasi-Newton nonlinear opti- all models performed approximately the same, although, for
mization scheme with finite-difference approximationd@t the leading NLCCA mode of th& dataset, NLCCA with
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bicor/mse cost functions yielded the lowest median rmseand the first 6 modes, accounting for 80% of the total SLP

(0.44), followed by NLCCA with bicor/mae (0.45) and NL- variance, were retained for further analysis.

CCA with cor/mse (0.45). NLCCA with cor/mae performed

worst with a median rmse of 0.47. Median rmse values and4.2 Training and testing procedure

relative rankings of the models were the same for the leading

NLCCA mode of they dataset. Three variants of the NLCCA model were applied to the
Of the four models, NLCCA with the robust cost functions SST and SLP d_atasets. The first, representing the stapdard

(bicor/mae) was the most stable. No trial yielded an rmse inNLCCA model, incorporated both non-robust cost functions

excess of the series standard deviation of one, with the max(cor/mse). The second and third used the bicor cost function

imum value under 0.6 for the mode. The other models had tO train the double-barreled network and either the mae or

at least one trial with an rmse value greater than one, whicHnSe cost function to train the inverse mapping networks. For

is indicative of severe overfitting. Maximum values for the Previty, the model with cor/mae cost functions was dropped

x mode ranged from 1.8 for NLCCA with bicor/mse, to 47.4 from consideration.

for NLCCA with cor/mse, and 49.6 for cor/mae. NLCCA  To assess the usefulness of the three variants of NLCCA

with bicor/mae performed similarly for themode, although ~for seasonal forecasting, models were validated on the basi

two trials with rmse greater than 20 were found for NLCCA ©f their forecast performance. PC scores from the 6 leading
with bicor/mse cost functions. PCs of the SLP dataset were used to predict PC scores from

Overall, results for the synthetic dataset suggest that ret€ 6 léadings PCs of the SST dataset at lead times of 0, 3, 6,

placing the cor/mse cost functions in NLCCA with bicor/mae 9> @nd 12-months. (Lead times are defined as the number of
cost functions leads to a more stable model that was less su&20nths from the predictor observation to the predictand ob-

ceptible to overfitting and poor test performance. All medel Servation, e.g., a forecast with a 3-month lead time from Jan
were run without weight penalty terms in this comparison. uary would be for April.) Tak|r_19c t_o be historical values of
In practice, the non-robust models will need weight penaltyt€ SLP PC scores ado be historical values of the SST PC

terms to reduce overfitting, as is done in our next test, wher&€ores, forecasts for a new cas@,,) at timet,, were made

NLCCA models are applied to a real-world climate predic- as follows. First, the double-barreled network was trained
with x andy as inputs and the resulting valueswandwv

tion problem. : ‘ ! :
were used to train the inverse mapping networks. Given a
new SLP data point(t,,), a new value of the canonical vari-
o ateu(t,,) was obtained from the double-barreled network.
4 Seasonal prediction Regression equations [Eq. (9) or Eq. (14)] were then used
to predict a new value of(¢,,). Finally, o(¢,) was entered
4.1 Data into the appropriate inverse mapping network to gie, ).

For the second and higher NLCCA modes, the same proce-

As the primary goal of the study is to investigate the efféct o dure was followed using residuals from the previous mode as
the robust cost functions on performance, and not to build annputs.
operational forecast model, predictor/predictand fielésew Following Hsieh (2001), neural networks were trained
selected as in Hsieh (2001). both with and without weight penalty terms using two

SST data were obtained from the second version of thehidden-layer nodes. A two-stage cross-validation procedu
NOAA Extended Reconstructed SST (ERSST.v2) datasetvas used to set the weight penalty coefficients and to esti-
(Smith and Reynolds, 2004). Monthly data on°ax2° grid mate forecast performance. For reference, a schematic di-
were extracted for a spatial domain covering the tropical Paagram showing how data were split into training/validation
cific Ocean (225-22°N, 122E—288E) for the time pe- segments is shown in Figure 6.
riod 1948 to 2003. The climatological seasonal cycle was To avoid overfitting in models trained with weight penalty,
removed, data were detrended, and a 3-month running meaplues of the coefficient®;, P», andP; in Egs. 3, 6, and 7
filter was applied. Principal component analysis (PCA) waswere determined via 10-fold cross-validation on the tragni
applied to the data; the first 6 modes accounting for 73% ofdataset (CV1 in Figure 6). The training record was split into
the total SST variance were retained for further analysts. P 10 contiguous segments. Models were trained on 9 of the 10
scores (i.e., the time series for the leading PCA modes) wergegments using weight penalties from the{€ett 0-%, 1075,
scaled according to the amount of variance explained by eachp—4, 10—3, 10-2, 101, 1, 10}. Forecasts on the remaining
mode. segment were then recorded for each weight penalty coef-

SLP data from the NCEP/NCAR Reanalysis (Kalnay et al.,ficient. While fixing the weight penalties, these steps were
1996) were obtained for the same region and period. Dataepeated 9 times, each time making forecasts on a different
on a 2.5x2.5° grid had the climatological seasonal cycle segment. Finally, forecasts for all 10 segments were com-
removed, the data were detrended, and then smoothed bylaned and validated against observations. Weight pesaltie
3-month running mean filter. PCA was applied to the datathat minimized the aggregated cross-validation error were
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(a) Mode 1 for x (b) Mode 1 fory
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Fig. 5. Boxplots showing the distribution of rmse between the fiystisetic mode and the first mode extracted by NLCCA modelgdpx
and (b)y with different combinations of non-robust and robust casictions over 50 trials. Boxes extend from the 25th to 75ticgriles,
with the line indicating the median. Whiskers representtiost extreme data withitt 1.5 times the interquartile range (i.e., the box height);
values outside this range are plotted as dots. The dastethtiicates a rmse equal to one. The ordinate is log-scaladdomodate the
large range in rmse.

CYy2-validation CV2-training 4.3 Skill for models with one mode
K—)%
| | 1 ] | T Results from NLCCA models with one mode are shown in
1948 - 2003 Figure 7. For reference, results from linear CCA models are
CVl-validation CV 1-training also shown. Cross-validated Pearson correlation skillés-a

aged over the entire domain following reconstruction of the
. . . - - . SST field from the predicted SST PC scores. Values of rmse

Fig. 6. Diagram showing how data were split into training (light .

gray) and validation (dark gray) segments for the first (Cs(A) were also calculated, but are not shown as relatlve'perfo.r-

second (CV2) cross-validation procedures. mance beftween.models was the same as for correlation skill.
Results with weight penalty are only given for the NLCCA
model with cor/mse cost functions as the addition of penalty
terms to models with the bicor cost function did not gengrall
lead to significant changes in skill.

recorded, neural networks were retrained on all 10 segments . .
combined using these penalties. Ten models were trained in Without weight penalty, the NLCCA model with cor/mse

. L L . . cost functions performed poorly, exhibiting mean skills
his manner nsitivi initial weights an N .
this manner to assess sensitivity to initial weights anddsa worse than CCA at all lead times. Even with concurrent

A second round of cross-validation was used to estimat@rediCtorlprediCtand fieldS, the mean correlation skillwa
out-of-sample forecast performance of the models (CV2 inlower than 0.2. NLCCA with bicor/mse cost functions and
Figure 6). The historical record was split into 5 contiguous bicor/mae cost functions performed much better, with mean
segments (each approximate|y 11 years in |ength) Mode|§0rre|ati0n skills exceeding 0.5 at the 0-month lead time.
were trained on 4 of the 5 segments using the cross-valitatioOver the 10 trials, minimum skills from models incorpo-
procedure outlined above. Forecasts on the remaining sedating the bicor cost function were higher than maximum
ment were then recorded. These steps were repeated 4 time&ills from the corresponding cor/mse models without weigh
each time making forecasts on a different segment. Finallypenalty.
forecasts for all 5 segments were combined and compared For NLCCA with cor/mse cost functions, minimum corre-
with observations. lations were lower than zero (i.e., no cross-validatior)ski
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penalty was applied to the model denoted cor/mse(p). Banw sh
the mean correlation over the spatial domain, averagedtbeetO C M
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spatial mean correlation from the 10 trials. Horizontaéfrshow >'
correlation skill from the CCA model. The ordinate is lindtéo =3
showing positive cross-validated skill. : ;
5] 1

1950 1960 1970 1980 1990 2000
for 6, 9, and 12-month lead times. All NLCCA models with Year

bicor/mse and bicor/mae cost functions, even those at a 12-
month lead time, showed positive skill. In general, NLCCA Fig. 8. Plots of (a) PC scores from the leading SST (solid line) and
models with bicor exhibited the least variability in skikb  SLP (dashed line) PCA modes; (b) the canonical variater the
tween repeated trials. In no case was the range between mifeading NLCCA mode from a model with cor/mse cost functions
imum and maximum skill greater than 0.2. For NLCCA with (dashed line) and one with bicor/mse cost functions (sofid)}
cor/mse cost functions, the range in skill exceeded 0.2 at a/2d (€) canonical variate for the leading NLCCA mode from a
lead times, indicating a very unstable model. fmuﬁgﬁ(')‘r']vs't?sz(ﬁzrﬁj:)COSt functions (dashed line) and bicse/oost
Little difference in skill was evident between bicor/mse '
and bicor/mae models, which suggests that the switch from
cor to bicor in the double-barreled network cost functiorswa
responsible for most of the increase in skill relative to the SLP and SST series, as evidenced by the Pearson correlation
standard NLCCA model. Inspection of the canonical variatesf 0.91 between the leading SST and SLP PCs.
shows that this was due to the insensitivity of the bicor cost Results discussed to this point have been for NLCCA mod-
function to the common outlier artifact described in Settio els without weight penalty. Hsieh (2001) found that the addi
2.2 and illustrated in Figure 3. tion of weight penalty to the standard NLCCA model lead to
Plots of the canonical variatesandv for the first mode of  improvements in performance, due in part to the avoidance
NLCCA models with cor/mse and bicor/mse cost functions of the common outlier artifact. Addition of weight penalty
at the 0-month lead time are shown in Figure 8 along withto the standard NLCCA model resulted in improvements in
PC scores from the leading SST and SLP PCA modes. Fomean correlation skill, although performance still lagged
these series, values of ¢arv) and bicofu,v) were 1.00  hind NLCCA with the bicor cost function at 9 and 12-month
and 0.96 respectively. The high correlation betweemdv lead times. At 0, 3, and 6-month lead times, maximum skill
for the NLCCA model with the cor cost function was driven over the 10 trials did, however, exceed the mean level of
almost exclusively by the common outliers present duringskill of the bicor-based models, which suggests that an ap-
1997-1998. With the 1997-1998 outliers removed{aov) propriate amount of weight penalty can result in a good per-
dropped to 0.28. On the other hand, the high correlation beforming model. Inspection of the time serieswofindv for
tweenu andwv for the NLCCA model with the bicor cost the best performing runs suggests that improved perforemanc
function was indicative of the strong relationship betwdgen  was due to avoidance of the common outlier artifact. How-
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ever, the wide range in performance over the 10 trials (@tg., was highest in the central equatorial Pacific Ocean, with a
0 and 6-month lead times) reflects the instability of thetrai secondary maximum to the northeast of Papua New Guinea
ing and cross-validation steps needed to choose the weigland east of Australia. Somewhat similar spatial patteras ar
penalty coefficients. In practice, it may be difficult to con- seen at the other lead times. Differences in skill between NL
sistently reach the performance level of the robust model byCCA and CCA are generally small, with the largestimprove-
relying solely on weight penalty to control overfitting oeth ments by NLCCA occurring along the boundary separating
standard NLCCA model. the two skill maxima.

Returning to the NLCCA models with bicor/mse and bi-
cor/mae cost functions, little difference in skill betwetkie 4.4 Skill for models with two modes
models is apparent from Figure 7. At short lead times (0
and 3-months), when the signal is strongest, the bicor/msé&esults reported in the previous section were from NLCCA
model performed slightly better than the bicor/mae model,models with a single nonlinear mode. Inclusion of the sec-
whereas at the longest lead time (12-months), when the sigend NLCCA mode may improve forecast performance in the
nal is weakest, the bicor/mae model performed best (and withropical Pacific Ocean (Wu and Hsieh, 2002). To investigate,
less run-to-run variability in skill). results from NLCCA models with two modes are shown in

NLCCA models with the bicor/mse and bicor/mae cost Figure 11.
functions tended to perform slightly better than CCA. Ferth  Model skill with two modes improved relative to NLCCA
bicor/mae model, the smallimprovement in performance waswith a single mode at short lead times. For instance, mean
significant (i.e., minimum skill over the 10 trials exceeded correlation skill for the NLCCA model with bicor/mae went
CCA skill) at 0, 3, 6, and 12-month lead times, while the from 0.55 with one mode to 0.65 with two modes at a O-
same was true of the bicor/mse model at 0 and 3-month leadhonth lead time, and from 0.52 to 0.59 at a 3-month lead
times. time. At longer lead times performance dropped, even to a

To investigate the differences between the linear and nonlevel below CCA at 6-months, which is indicative of over-
linear models, plots of the first CCA and NLCCA (bi- fitting. However, the same was also true of the CCA model
cor/mae) SST modes projected onto the PC1-PC2 and PClwhere, at 9 and 12-month lead times, skill decreased rela-
PC3 planes are shown in Figure 9a. Spatial loading patterntive to the model with a single mode. Results are somewhat
associated with each PC are shown in Figures 9b-d. For that odds with those reported by Wu and Hsieh (2002), who
NLCCA mode at short lead times, a quadratic response wa$ound the largest improvements in model performance to oc-
present in the PC1-PC2 plane. Negative values of PC2 oceur at longer lead times. However, cross-validation was not
curred when values of PC1 were both negative and positiveemployed by Wu and Hsieh (2002), which means that over-
which, from the spatial loading patterns, means that the prefitting may have caused inflated skill estimates at these lead
dicted SST response at the minimum/maximum values of times.

(which, at left/right extremes of the curve, correspond# L As pointed out by Hsieh (2001), nonlinearity in the tropi-
Nifia/El Nifio states respectively) exhibited east/weshna cal Pacific is strongest in the leading SST mode and is much
metry. The curve rotated counter clockwise and straiglitene weaker (or even not evident) in higher modes. As a result,
with increasing lead time. At short lead times, the leadingusing a nonlinear model, even one that can be estimated ro-
CCA mode was driven mainly by PC1. bustly, to extract the second or higher modes may not be war-

Conversely, the NLCCA curve in the PC1-PC3 plane dis-ranted and could lead to poor forecast performance. When
played increased nonlinearity with lead time. Predictdd va the skill improvement of NLCCA over CCA is minimal, as
ues of PC3 were typically positive when values of PC1 wereis the case here even at short lead times, it may be more ap-
both negative and positive, which, from the spatial loadingpropriate to apply CCA to residuals from the first NLCCA
pattern of PC3, indicates differences in the contrast betwe mode. This approach is currently used in operational NL-
predicted SST anomalies along the equator and off the equacCA forecast models run by the Climate Prediction Group
tor during La Nifia and EI Nifio states. Observed asymmetryat the University of British Columbia (A. Wu, 2007, personal
in the spatial patterns and magnitudes of SST anomalies agommunication).
sociated with La Nifia and El Nifio are present in the obser-
vational record and have previously been detected by nonlin
ear methods (Hsieh, 2001; Monahan, 2001; Wu and Hsieh5 Conclusions
2002).

To this point, reported skills have been averaged over theNLCCA based on multi-layer perceptron neural networks is
entire spatial domain. For reference, Figure 10 shows spaa flexible model capable of nonlinearly generalizing linear
tial patterns of correlation skill for NLCCA models with CCA (Hsieh, 2000). However, the complicated model archi-
bicor/mae cost functions at lead times of 0 and 12-monthdecture and use of non-robust cost functions means that over
respectively. For comparison, correlation skills from CCA fitting is difficult to avoid, particularly when dealing withe
models are also plotted. Spatially at 0-month lead timd, ski short, noisy datasets that are common in seasonal climate
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(a) NLCCA and CCA mode 1
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Fig. 9. (a) Plots of the first SST mode for CCA (thin line) and NLCCAIicor/mae cost functions (thick line) in the planes of tlFPC2
and PC1-PC3 scores at 0, 3, 6, 9, and 12-month lead timedaSgterns for (b) PC1, (c) PC2, and (d) PC3, all normaliwednit norm.

forecasting problems. To make NLCCA more robust, non-Hsieh (2001). Replacing the mse by the mae leads to im-

robust cost functions in the model are replaced by robust cosproved performance on the synthetic dataset, but little im-

functions: the Pearson correlation in the double-barmneétd  provement on the climate dataset, except at the longest lead
work is replaced by the biweight midcorrelation, while the time where the signal-to-noise ratio is smallest.

mse in the inverse mapping network can be replaced by the

mae Based on these results, it is recommended that the bi-

weight midcorrelation replace the Pearson correlatiofén t
Through analysis of a synthetic dataset and a real-worldNLCCA model. Choosing the mse or mae cost function ap-
climate dataset, adoption of the biweight midcorrelation i pears to be more problem dependent, and should be con-
shown to result in large improvements in model stability, sidered as part of the model selection process. Other cost
mainly by avoiding the common outlier artifact noted by functions, for example those based on thg norm with
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(a) NLCCA bicor/mae (0O—month lead) (d) NLCCA bicor/mae (12-month lead)
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Fig. 10. Spatial correlation skill at 0-month lead time for (a) NLC®@#4th bicor/mae cost functions and (b) CCA. Panel (c) showEEA
skill minus CCA skill. Panels (d) to (f) as in (a) to (c) but fb2-month lead time

1 < p < 2 (Hanson and Burr, 1988), might also be viable, Canada, and a project grant from the Canadian Foundatiddlifor
depending on the prediction task. More research is needed tamate and Atmospheric Sciences.

determine the most appropriate cost function for the irvers
mapping networks.

Development of a robust NLCCA model for operational
prediction of SSTs in the equatorial Pacific Ocean is CUrBarnett, T. P. and Preisendorfer, R.: Origins and levels arfitinly
rently underway. To maximize skill, additional predictors  and seasonal forecast skill for United States surface air te
for example lagged SSTs (Wu et al., 2006), upper ocean heat peratures determined by canonical correlation analysis)tMy
content, and Madden-Julian oscillation indices (McPhaden Weather Review, 115, 1825-1850, 1987.
etal., 2006), are being investigated. Model performancg ma Barnston, A. G. and Ropelewski, C. F.: Prediction of ENSO
also be improved by specifying corrections on predictions Episodes Using Canonical Correlation-Analysis, Jourfiale

when the model extrapolates beyond the limits of the train- mate, 5, 1316-1345, 1992. N
ing data, as suggested by Wu et al. (2007). Blsho_p, C._ M.: Neural Networks for Pattern Recognition, Qrf
University Press, Oxford, 1995.
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