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Abstract— Probabilistic models were developed to provide
predictive distributions of daily maximum surface level ozone
concentrations. Five forecast models were compared at two
stations (Chilliwack and Surrey) in the Lower Fraser Valley of
British Columbia, Canada, with local meteorological variables
used as predictors. The models were of two types, conditional
density models and Bayesian models. The Bayesian models
(especially the Gaussian Processes) gave better forecasts for
extreme events, namely poor air quality events defined as having
ozone concentration ≥ 82 ppb.

I. INTRODUCTION

FORECASTING poor air quality events associated with
high surface level ozone concentration has had generally

low skills [4]. The motivation behind developing probabilistic
forecast models is to provide reliable predictive distribution
for these extreme events.

In [4], the procedure is to use statistical-machine learning
methods to forecast the daily maximum ozone concentration
from local meteorological measurements of the same day
plus the ozone concentration from the previous day. After the
empirical model has been built, numerical weather prediction
model output for the next day is used as input to the empirical
model to issue operational ozone forecast for the next day.
In this paper, we will compare several probabilistic models
on forecasting the daily maximum surface level ozone con-
centration for two stations (Chilliwack and Surrey) in the
Lower Fraser Valley (LFV) of British Columbia, Canada.
Of particular interest are poor air quality events, defined as
having daily maximum ozone concentration ≥ 82 ppb.

We will compare two main types of models capable of
forecasting distributions: Conditional density models [1], and
Bayesian models [2], [11]. The main difference between the
two is that the former uses a single optimal function (based
on maximum likelihood) to forecast while the latter gives
all probable functions a non-zero probability and integrates
over all of them to obtain the forecast. We will show that by
including low probability functions, the Bayesian approach
forecasts extreme events better.
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II. METHODOLOGY

A. Data

Data were obtained from the Greater Vancouver Regional
District (GVRD) air quality monitoring network [4]. As the
majority of elevated ozone concentrations in the region is
confined to late spring and summer, 947 days of data were ex-
tracted for the months from May through September, 1994–
2001. The single predictand or response variable is the daily
maximum of the hourly surface level ozone concentration at
one station. We will test predictions at two separate stations,
Chilliwack and Surrey in the Lower Fraser Valley of British
Columbia. Since ozone concentration is non-negative, we
used the natural logarithm of the ozone concentration for the
predictand, so the predictand is an unbounded real variable.

There are 29 potential predictors, these being the maxi-
mum daily ozone concentration of the previous day, and the
temperature, precipitation, pressure, wind speed and direction
(all at zero lead time) from several stations in the monitoring
network (similar to [4]). Random Forests [3], an ensemble
version of Classification and Regression Trees (CART), was
used to reduce the number of predictors, from 29 to 16 for
Chilliwack, and to 20 for Surrey.

B. Models

Five models are used. Two are conditional density mod-
els: Conditional density network with Gaussian distribution
(CDN-Gaussian) [1], [14], [5], and conditional density net-
work with the Johnson translation system (CDN-Johnson)
[12]. Both CDN models use multi-layer perceptron (MLP)
neural network models (with 1 hidden layer) to model the
parameters of the distributions, with the cost function being
the negative log likelihood, and overfitting prevented by
early stopping [1]. In CDN-Gaussian, the predictand (i.e.
the log of the ozone concentration) is assumed to have a
Gaussian distribution. Once we get the predictive distribution
of the log ozone concentration, we can easily calculate the
predictive distribution of the ozone concentration, which is a
log-normal distribution. From the Johnson translation system
of distributions, the 3-parameter log-normal distribution was
chosen, with the 3 parameters modeled by an MLP. Since this
Johnson distribution is log-normal, the ozone concentration
is used directly as the predictand in CDN-Johnson.

The remaining three models use the Bayesian framework.
For all three models, we take the log of the ozone concen-
tration as the predictand and assume that the predictand has
a Gaussian distribution, as we did for CDN-Gaussian. The
predictive distribution of ozone concentration is therefore



log-normal for these models. In Gaussian process (GP)
regression [11], an input-independent Gaussian noise and a
Gaussian process prior are used. Being a kernel method,
GP offers a choice of kernel or covariance functions. In
this case, a commonly used Matern class kernel function
[11] with parameter 5/2 is used. Bayesian neural network
(BNN) [9] also uses an input-independent Gaussian noise
and a Gaussian prior and is trained with a 1-hidden-layer
MLP. Finally, Bayesian linear regression (GP-linear) is also
used to check whether the underlying relations are linear or
nonlinear. This is not a least-square linear regression, but a
Bayesian version of linear regression, done by restricting the
covariance function to a linear function in GP.

Our particular interest is on GP, a relatively new method,
and one purpose of this paper is to compare it with neural
networks. Using a Bayesian framework, GP has the all the
advantages of Bayesian techniques in machine learning, such
as naturally avoiding overfitting. Moreover, with the structure
as specifed in our paper, GP is analytical tractable, so its
accuracy is high relative to other Bayesian learning methods
which need to make approximations when calculating the
posterior distribution. Being a kernel method, GP can model
a broad range of non-linear functions by using suitable
kernels, hence it can capture complicated non-linear rela-
tionships just as neural networks. One criticism of GP is
that it is computationally expensive. In practice, we found
that the speed of GP and neural networks are comparable —
the reason being that neural networks need to average over
an ensemble of models to alleviate local minima in the cost
function.

An 8-fold cross-validation scheme was used, i.e. with 8
years of data, 1 year was set aside for forecast verification,
while the models were trained using data from the remaining
7 years, and the process was repeated until all 8 years have
been used for forecast verification. For all the models using
neural networks (CDN-Gaussian, CDN-Johnson and BNN),
in each fold of cross-validation, the bootstrap procedure [6]
was used to randomly select bootstrap samples from the
training data. A model was trained for each bootstrap sample
– the training data not selected by the particular bootstrap
sample would be used later for testing the trained model.
For CDN-Gaussian and BNN, the results were taken as the
ensemble average of 300 bootstrap samples, and for CDN-
Johnson, the average of 15. The bootstrap ensembles were
repeated for different number of hidden neurons, and from
the testing data, the optimal number of hidden neurons was
determined.

III. RESULTS

A. Deterministic Scores

The median of the predictive distribution can be used
to give a deterministic forecast. The mean absolute error
(MAE) and root mean square error (RMSE) at Chilliwack
and Surrey are shown in Table I. The results show that for
both stations and in terms of both MAE and RMSE, GP
turned out to be the best model. But these results are not

TABLE I

DETERMINISTIC SCORES FOR THE FIVE MODELS, WITH THE BEST SCORE

AMONG THE FIVE MODELS PRINTED IN BOLD.

Chilliwack Surrey
MAE RMSE MAE RMSE

GP 5.3534 7.0045 5.0334 6.5849
BNN 5.7443 7.8145 5.4675 7.3937

CDN-Gaussian 5.9034 7.7082 5.5122 7.1279
CDN-Johnson 5.5074 7.2042 5.4016 7.0437

GP-Linear 6.2890 8.2665 5.8283 7.5295

very meaningful for probabilistic forecasting models, since
the decision probability threshold does not necessarily have
to be the median, especially for extreme weather events.

B. Probabilistic Scores

The forecasted and observed ozone concentration at Chilli-
wack are plotted for 120 days during May-Sept., 1995 in Fig.
1 (with data gaps omitted) for the GP and CDN-Johnson
results. For the first 20-30 points and the most extreme
value, the 95% prediction interval for GP is wider than that
for CDN-Johnson, but for the remaining part, the prediction
interval for GP is comparable to that for CDN-Johnson.
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Fig. 1. Forecast of daily maximum ozone concentration at Chilliwack by the
GP model (upper panel) and by the CDN-Johnson model (lower panel). The
ozone concentration is plotted, with the threshold for poor air quality events
(i.e. ozone concentration ≥ 82 ppb) indicated by the horizontal dashed line.
The median of the predictive distribution for each day is indicated by an
asterisk, with the observed value indicated by a circle. The 95% prediction
interval is shaded.

A good probabilistic forecast should have two attributes:
reliability and sharpness [10]. Reliability means that the
predictive probability of an event should be consistent with
the historical observations, and sharpness means that the
predictive probability should separate from the climatologi-
cal probability forecast. Well-designed scores for evaluating



probabilistic forecasts of continuous variables are the con-
tinuous ranked probability score (CRPS) and the ignorance
score (IGN) [7].

The continuous ranked probability score is defined as

CRPS =
1
n

n∑
i=1

crps (Fi, yi)

=
1
n

n∑
i=1

(∫ ∞

−∞
[Fi (y) − H (y − yi)]

2 dy

)
,

where for the ith prediction, the cumulative probability
Fi (y) = p (Y ≤ y), and H (y − yi) is the Heaviside function
that takes the value 0 when y − yi < 0, and 1 otherwise.

The ignorance score is defined as

IGN =
1
n

n∑
i=1

ign (pi, yi) =
1
n

n∑
i=1

[− log (pi (yi))] ,

where pi is the predictive density and yi the corresponding
observed value. IGN is simply the negative log predictive
density, which is also the cost function used to train the
CDN models.

Both scores are negatively oriented, i.e. the lower the
better. If the predictive distribution is Gaussian (with mean
µ and standard deviation σ), the analytical forms of the
scores can be derived [7]. For a Gaussian distribution, the
key difference between these two scores is that CRPS grows
linearly with the normalized prediction error (y − µ) /σ, but
IGN grows quadratically. Hence, the ignorance score assigns
harsh penalties to particularly poor probabilistic forecasts,
and can be exceedingly sensitive to outliers and extreme
events [13], [8].

The CRPS and IGN averaged over all the test points are
shown in Table II, the scores over the poor air quality events,
in Table III, and the scores over the fair air quality events
(i.e. 52 ppb ≤ ozone concentration < 82 ppb), in Table IV.
If we care only about the poor air quality and treat it as
a binary event, then we can also calculate the Brier score
(BS), Brier skill score (BSS) and the area under the Relative
Operating Characteristic (ROC) curve [10]. However, there
are only 9 poor events out of 947 points for Chilliwick
and 5 out of 947 points for Surrey, so when calculating
those scores, the calculation error may be larger than the
differences between the scores of different models, which
makes them unmeaningful. If we take 52 ppb as the threshold
of the binary forecast (i.e. fair-poor air quality versus good
air quality), the sample size should be enough to calculate
reliable BS, BSS and area under the ROC curve. These scores
are shown in Table V, with BS being negatively oriented,
BSS and area under the ROC curve being positively oriented,
and climatology used as the reference forecast in calculating
BSS.

For the overall scores (averaged over all 947 test points),
among the four top scores printed in bold in Table II, GP
captured three of the four, while CDN-Johnson captured one.
Further behind are CDN-Gaussian, BNN and GP-linear.

TABLE II

CRPS AND IGN CALCULATED OVER ALL 947 TEST POINTS, WITH THE

BEST SCORE AMONG THE FIVE MODELS PRINTED IN BOLD.

Chilliwack Surrey
CRPS IGN CRPS IGN

GP 3.8708 3.4105 3.6342 3.3268
BNN 4.2610 3.4181 3.9591 3.3535

CDN-Gaussian 4.2148 3.9990 3.9159 3.3570
CDN-Johnson 3.9083 3.3575 3.8444 3.3652

GP-Linear 4.5292 3.5508 4.1604 3.4658

TABLE III

CRPS AND IGN CALCULATED OVER POOR AIR QUALITY EVENTS. FOR

CHILLIWACK, THERE ARE 9 POOR EVENTS OUT OF 947 POINTS; FOR

SURREY, THERE ARE 5 POOR EVENTS OUT OF 947.

Chilliwack Surrey
CRPS IGN CRPS IGN

GP 8.6306 4.2607 13.3502 4.7924
BNN 11.7326 4.3519 16.0328 5.0461

CDN-Gaussian 10.2731 4.5850 16.5075 5.4449
CDN-Johnson 11.7009 4.5932 16.9548 5.2019

GP-Linear 10.0993 4.4348 16.5386 5.2284

For the scores averaged over only the poor air quality
events (Table III), the differences between Bayesian mod-
els and conditional density models are remarkable. Among
the four top scores printed in bold, GP captured all four.
Although BNN performed mediocrely on overall scores, it
captured three second-best scores for poor events. Even GP-
linear, a linear Bayesian model performed better than the
two nonlinear conditional density models for Chilliwack and
comparable to them for Surrey over poor events.

The 9 poor events at Chilliwack plotted in Fig. 2 revealed
that GP performed better than CDN-Johnson for most poor
events. The upper panel shows the predictive median and

TABLE IV

CRPS AND IGN CALCULATED OVER FAIR AIR QUALITY EVENTS. FOR

CHILLIWACK, THERE ARE 110 FAIR EVENTS OUT OF 947 POINTS; FOR

SURREY, THERE ARE 114 FAIR EVENTS OUT OF 947.

Chilliwack Surrey
CRPS IGN CRPS IGN

GP 5.9475 3.8493 5.4853 3.7728
BNN 5.9389 3.8315 6.2033 3.8775

CDN-Gaussian 6.6425 4.1880 6.1155 3.8815
CDN-Johnson 5.9080 3.8386 5.8706 3.8611

GP-Linear 7.2645 4.0657 6.5405 3.9429

TABLE V

BS, BSS AND THE AREA UNDER THE ROC CURVE CALCULATED USING

THE THRESHOLD OF 52 PPB FOR BINARY FORECASTS AT CHILLIWACK

AND SURREY.

Chilliwack Surrey
BS BSS ROC BS BSS ROC

GP 0.0519 0.527 0.957 0.0621 0.434 0.934
BNN 0.0525 0.522 0.957 0.0664 0.396 0.924

CDN-Gauss. 0.0570 0.482 0.946 0.0679 0.382 0.923
CDN-Johnson 0.0519 0.527 0.964 0.0677 0.384 0.929

GP-Linear 0.0644 0.414 0.935 0.0740 0.327 0.909



the 95% prediction interval for GP and for CDN-Johnson.
Both predictive medians of GP and CDN-Johnson underpre-
dicted the ozone concentration for all 9 events. For the 1st
event, CDN-Johnson outperformed GP, but for the 2nd to
7th events, GP outperformed CDN-Johnson, while for the
last two events, GP and CDN-Johnson were similar. The
95% prediction intervals for GP and CDN-Johnson largely
overlapped, with both encompassing the true values. The
lower panel also shows the predictive distributions as a
function of the ozone concentration for the 1st, 4th and 7th
events. For the 4th and 7th events, the predictive distributions
of GP are skewed towards larger ozone concentration values
than those of CDN-Johnson; for the first event, the situation
is reversed.

For the scores over fair events (Table IV), CDN-Johnson,
BNN and GP are comparable for Chilliwack, while for
Surrey, GP has the highest scores and CDN-Johnson second
highest. Overall these differences between Baysian non-
linear models and conditional density models are small, i.e.
we can consider them comparable over fair events. These
results agree with the BS, BSS and area under ROC curve
for binary forecast with threshold at 52 ppb (Table V).
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Fig. 2. Prediction and predictive distribution of the ozone concentration
for the 9 poor air quality events at Chilliwack. The predictive medians are
indicated by triangles connected by a solid line in GP and squares connected
by a dashed line in CDN-Johnson, with the corresponding observed values
shown as circles. The thin solid and dashed lines in the top panel indicate
the 95% prediction interval for GP and CDN-Johnson, respectively. Bottom
panel also plots the predictive distributions for the 1st, 4th and 7th events,
with the solid curve for GP and dashed curve for CDN-Johnson, and with
the predictive medians and observations in the upper panel reproduced as
thin lines.

IV. DISCUSSION AND CONCLUSION

In theory, Bayesian models can give an accurate measure
of the predictive uncertainty arising from (a) the uncertainty
of the noise process and (b) the uncertainty of the model

weights (i.e. parameters) due to finite sample size. The
conditional density models only estimates the predictive
uncertainty arising from the noise process, without taking
in account the uncertainty of the model weights.

In the observed data, most of the test points have good
similarities with the training data, so for these points, the
uncertainty of the model weights (or uncertainty of the
underlying function) is low. Using the weights found by
maximizing likelihood, conditional density models tend to
find a function which is quite close to the true underlying
function. Consequently, it will give good prediction for these
test points. On the other hand, Bayesian approaches give
the most probable functions a very high probability, but
it does not rule out other possibilities — instead, it gives
the unlikely functions a very low but nonzero probability.
Therefore, for low uncertainty points, Bayesian models can
have comparable (or slightly worse) performance relative
to conditional density models. For the relatively few points
which have little similarity with the training data, the uncer-
tainty of the underlying function (hence the model weights) is
high. Conditional density models just decide on one function
and rule out other functions, while Bayesian models give
all possible functions a non-zero probability, and integrate
over all of them to obtain the forecast. Thus in general, the
Bayesian models have better performance over the highly
uncertain events. This is the reason why Bayesian models
may have similar overall scores compared to conditional
density models, but outperform them over the rare events.

The conditional density models can be tuned to achieve
good performance on rare events: For the CDN models, we
can increase the number of hidden neurons and do not use
regularization (or decrease the number of hidden neurons if
the rare events have low variance), thus forcing the model to
fit the few rare events. Alternatively, when re-sampling, we
can increase the number of repetitions for the rare events
[4], which is equivalent to converting the rare events to
“normal” events. But applying these techniques will sacrifice
the performance of the model on the majority of the data
points and will yield worse overall scores, hence a trade-off.

Using a Bayesian approach, GP provides a moderate
solution for this problem, i.e. it gives good overall scores
and also good scores on rare events, making GP particu-
larly valuable in extreme weather forecasting. The relatively
mediocre performance of the BNN is not entirely clear.
It is probably because the BNN code (from Netlab [9])
makes the Laplace approximation when solving for the
hyperparameters. In contrast, the GP Bayesian formulation
is analytically tractable without having to make the Laplace
approximation — an attractive feature of GP relative to other
Bayesian methods.
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