
Chap.9 Tree-based methods [Book, Sect. 9.2]

9.1 Classification and regression trees (CART)

In the American Medical Association’s Encyclopedia of Medicine,
there are many tree-structured flow charts for patient diagnosis.
E.g., the questions asked are: Is the body temperature above
normal? Is the patient feeling pain? Is the pain in the chest area?
The terminal nodes are the diseases, e.g. influenza, heart attack,
food poisoning, etc. Flow chart looks like an inverted tree.

Decision tree methods partition the predictor x-space into regions
and fit a simple function f (x) in each region.

The most common decision tree method is CART (classification and
regression tree) (Brieman et al., 1984), which partitions the

1 / 19



predictor space into rectangular regions, and for regression problems,
fits f (x) = constant in each region, so there is a step at the
boundary between two regions.

CART is useful for two main reasons:
(i) It gives an intuitive display on how the predictand or response
variable broadly depends on the predictors.
(ii) When there are many predictors, it provides a computationally
inexpensive way to select a smaller number of relevant predictors.

These selected predictors can then be used in more accurate but
computationally more expensive models like NN, etc., i.e. CART can
be used to pre-screen predictors for more sophisticated models
(Burrows, 1999), (although stepwise linear regression often does
better than CART in pre-screening).

2 / 19



CART can be used for both nonlinear classification & regression.

Focus on the regression problem, with yd the predictand data.
Suppose there are two predictor variables x1 and x2.

Look for the partition point x
(1)
1 where the step function f (x) = c1

for x1 < x
(1)
1 , and f (x) = c2 for x1 ≥ x

(1)
1 gives the best fit to the

predictand data.

If the fit is determined by the mean squared error (MSE), then the
constants c1 and c2 are simply given by the mean value of yd over
the two separate regions partitioned by x

(1)
1 .

A similar search for a partition point x
(1)
2 is performed in the x2

direction. Whether our first partition should be at x
(1)
1 or x

(1)
2 is

based on whichever partition yields the smallest MSE.

3 / 19



Figure : Schematic diagram illustrating the partitioning of the predictor

x-space by CART. (a) First partition at x1 = x
(1)
1 yields 2 regions, each

with a constant value for the predictand y . (b) Second partition at

x1 = x
(2)
1 is followed by a 3rd partition at x2 = x

(3)
2 , yielding 4 regions,

and the predictand described by the 4 constants over the 4 regions.

4 / 19



The partition process is repeated until some stopping criterion is
met.

Illustrate CART with a dataset containing the daily maximum of the
hourly-averaged ozone at Los Angeles, with high ozone level
indicating poor air quality.

Nine predictor variables for the ozone, including temperature
measurements T1 and T2 at two stations, visibility measured at the
Los Angeles airport, and the pressure gradient between the airport
and another station.

In the 9-dimensional predictor space, CART made the 1st partition
at T1 = 63.05◦F, 2nd partition at T1 = 70.97◦F and 3rd partition at
T2 = 58.50◦F. The partitioned regions are shown schematically in
Fig.b above, with x1 & x2 representing T1 & T2, respectively.

5 / 19



Figure : Regression tree from CART where the predictand y is the Los
Angeles ozone level (in ppm), and there are nine predictor variables. The

6 / 19



“tree” is plotted upside down, with the “leaves” (i.e. terminal nodes)
drawn as rectangular boxes at the bottom and the non-terminal nodes as
ellipses. (a) The tree after 3 partitions has 4 leaf nodes, while (b) the
tree after 5 partitions has 6 leaf nodes. In each ellipse, a condition is
given. Starting from the top ellipse, if the condition is satisfied, proceed
along the left branch down to the next node; if not, proceed along the
right branch; continue until a leaf node is reached. In each rectangular
box, the constant value of y (computed from the mean of the data yd) in
the partitioned region associated with the particular leaf node is given, as
well as n, the number of data points in that region. Among the nine
predictor variables, the most relevant ones are the temperatures T1 and
T2 (in ◦F) at two stations, p grad (pressure gradient in mm Hg) and
visibility (in miles).

7 / 19



If one continues partitioning, the tree grows further. In Fig. b, there
is now a fourth partition at pressure gradient = −13 mm Hg, and a
fifth partition at visibility = 75 miles. Hence CART tells us that the
most important predictors, in decreasing order of importance, are
T1, T2, pressure gradient and visibility.

The tree now has six terminal or leaf nodes, denoting the six regions
formed by the partitions. Each region is associated with a constant
ozone value, the highest being 27.8 ppm (attained by the second
leaf from the right).

From this leaf node, one can then retrace the path towards the root,
which tells us that this highest ozone leaf node was reached after
satisfying first 63.05◦F ≤ T1, then 70.97◦F ≤ T1 and finally visibility
< 75 miles, i.e. the highest ozone conditions tend to occur at high
temperature and low visibility.

8 / 19



Q1: What are the conditions for the lowest ozone values to occur?
—–

CART also give the number data points in each partitioned region,
e.g. 15 points belong to the highest ozone leaf node versus 88 to
the lowest ozone node, out of a total of 203 data points.

After training is done, when a new value of the predictor x becomes
available, one proceeds along the tree till a leaf node is reached, and
the forecast for y is then simply the constant value associated with
that leaf node.

How big a tree should one grow? It is not a good idea to stop the
growing process after encountering a partition which gave little

9 / 19



improvement in the MSE, because a further partition may lead to a
large drop in the MSE.

Instead, one lets the tree grow to a large size, and uses regularization
(i.e. weight penalty) to prune the tree down to the optimal size.

Let L = the number of leaf nodes. A regularized objective function is

J(L) = E (L) + PL, (1)

where E (L) is the MSE for the tree with L leaf nodes, and P is the
weight penalty parameter, penalizing trees with excessive leaf nodes.

The process to generate a sequence of trees with varying L is:
Start with the full tree, remove the internal node the demise of
which leads to the smallest increase in MSE, and continue until the
tree has only one internal node.

10 / 19



From this sequence of trees with a wide range of L values, one
chooses the tree with the smallest J(L), thus selecting the tree with
the optimal size for a given P .
The best value for P is determined from cross-validation.

CART can also be used for classification. The constant value for y
over a region is now replaced by the class k to which the largest
number of yd belong. Instead of MSE, we need a different E .

Let plk denoting the proportion of data in region l belonging to class
k . Ideally, plk should be as close to 0 as possible except for one
class, i.e. each region is ideally occupied by only one class, so aim
for plk = 0 or 1. Two common choices for E :
The Gini index

E (L) =
L∑

l=1

K∑
k=1

plk(1− plk) , (2)

11 / 19



or cross entropy

E (L) = −
L∑

l=1

K∑
k=1

plk ln plk , (3)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p

E

 

 

Gini
entropy

Figure : Error E being p(1− p) (Gini index) and −p lnp (cross entropy).

12 / 19



So far, the partitions are of the form xi < s, thus restricting the
partition boundaries to lie parallel to the axes in x-space. If a
decision boundary in the x1-x2 plane is oriented at 45◦ to the x1
axis, then it would take many parallel-axes partitions to approximate
such a decision boundary.

Some versions of CART allow partitions of the form
∑

i aixi < s,
which are not restricted to be parallel to the axes, but the easy
interpretability of CART is lost.

CART is not very stable: A small change in the data can result in a
very different series of splits.
This instability is due to the hierarchical nature of the process, i.e.
the effect of an error in the top split is propagated down to all of
the splits below it.

13 / 19



CART has low predictions skills relative to NN.

CART uses piecewise constant functions to represent the nonlinear
relation y = f (x). To extend beyond a zero-order model like CART,
first-order models, like the M5 tree model (Quinlan, 1993), use
piecewise linear functions to represent the nonlinear relation.

9.2 Random forests (RF)

The unstable nature and low prediction skills of CART are overcome
by using an ensemble of trees. A boostrap ensemble of CART
models is called a random forest (Breiman, 2001):

If N is the number of training data points and M the number of
predictor variables, one generates many bootstrap samples (by
selecting N data points with replacement from the training dataset),

14 / 19



then train CART on each bootstrap sample using m randomly
chosen predictors out of the original M predictors (m� M if M is
large). The trees are fully grown without pruning.

With new predictor data, y is taken to be the mean of the ensemble
output in regression problems, or the class k chosen by the largest
number of ensemble members in classification problems.

Choosing randomly m� M predictors ensures ensemble members
are very different from each other => outperforms RF with m = M .

When the number of predictors is large, but the fraction of relevant
predictors is small, RF is likely to perform poorly with small m since
many trees will not have relevant predictors.

15 / 19



Default m is about M/3 for regression and
√
M for classification,

and minimum number of observations in a leaf node is 5 for
regression and 1 for classification.
Best to determine these hyperparameters, esp. m, by validation.

Data not selected during the bootstrap resampling, i.e. the
out-of-bag samples, can be used for validation.

An alternative to RF is an ensemble of boosted trees, i.e. boosting
with trees. Hastie et al. (2009, Chap.15) shows boosted trees
outperforming RF. Caruana and Niculescu-Mizil (2006) shows
boosted trees outperforming RF, NN etc.

Matlab codes:

CART is classregtree.m from the MATLAB statistical toolbox.

16 / 19



www.mathworks.com/help/toolbox/stats/classregtree.html

t = classregtree(X, y, ...)

Random forest code is downloadable from
http://code.google.com/p/randomforest-matlab/

MATLAB Statistical Toolbox has its own random forest code,
named treebagger:
www.mathworks.com/help/toolbox/stats/treebagger.html

but from what I’ve read, it may be slower than randomforest-matlab.

M5 tree is available from the Weka package,
weka.sourceforge.net/doc/weka/classifiers/trees/m5/

M5Base.html

17 / 19

www.mathworks.com/help/toolbox/stats/classregtree.html
http://code.google.com/p/randomforest-matlab/
www.mathworks.com/help/toolbox/stats/treebagger.html
weka.sourceforge.net/doc/weka/classifiers/trees/m5/M5Base.html
weka.sourceforge.net/doc/weka/classifiers/trees/m5/M5Base.html


Boosting (with trees):
http://www.mathworks.com/help/stats/fitensemble.html

References:

Breiman, L. (2001). Random forests. Machine Learning, 45:5–32.

Brieman, L., Friedman, J., Olshen, R. A., and Stone, C. (1984).
Classification and Regression Trees. Chapman and Hall, New
York.

Burrows, W. R. (1999). Combining classification and regression
trees and the neuro-fuzzy inference system for environmental data
modeling. In 18th International Conference of the North
American Fuzzy Information Processing Society - NAFIPS, pages
695–699, New York, NY.

18 / 19

http://www.mathworks.com/help/stats/fitensemble.html


Caruana, R. and Niculescu-Mizil, A. (2006). An empirical
comparison of supervised learning algorithms. In Proceedings of
the 23rd International Conference on Machine Learning, pages
161–68, Pittsburgh, PA.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). Elements of
Statistical Learning: Data Mining, Inference and Prediction.
Springer, 2nd edition.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo.

19 / 19


