
8.6 Bayesian neural networks (BNN) [Book, Sect. 6.7]

While cross-validation allows one to find the weight penalty
parameters which would give the model good generalization
capability, the separation of the data record into training and
validation segments is cumbersome, and prevents the full data
record from being used to train the model.

Based on Bayes theorem, MacKay (1992b,a) introduced a Bayesian
neural network (BNN) approach which gives an estimate of the
optimal weight penalty parameter(s) without the need of validation
data. Foresee and Hagan (1997) applied this approach to the MLP
NN model using the Levenberg-Marquardt optimization algorithm,
with their code implemented in the MATLAB neural network
toolbox as trainbr.m.
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8.7 Ensemble of models [Book, Sect. 6.8]

In weather forecasting, it is standard practice to run a numerical
weather prediction model multiple times from slightly perturbed
initial conditions, giving an ensemble of model runs.
The rationale is that the atmospheric models are very unstable to
small perturbations in the initial conditions, i.e. a tiny error in the
initial conditions would lead to a vastly different forecast a couple of
weeks later.

From this ensemble of model runs, the averaged forecast over the
individual ensemble members is usually issued as the forecast, while
the spread of the ensemble members provides information on the
uncertainty of the forecast.
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In NN applications, one usually trains a number of models, e.g. to
deal with the multiple minima in the objective function, to
experiment varying the number of model parameters, etc.

One can test the models’ skill over some validation data and simply
select the best performer. However, the model skill is dependent on
the noise in the validation data, i.e. if a different validation dataset
is used, a different model may be selected as the best performer.

Hence, it is common to retain a number of good models to form an
ensemble of models, and use the ensemble average of their outputs
as the desired output. In machine learning jargon, an ensemble of
models is called a committee.

One way to generate multiple models is through bagging
(abbreviated from Bootstrap AGGregatING) (Breiman, 1996),
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developed from the idea of bootstrapping (Efron, 1979; Efron and
Tibshirani, 1993) in statistics.

Under bootstrap resampling, data are drawn randomly from a
dataset to form a new training dataset, which is to have the same
number of data points as the original dataset.
A data point in the original dataset can be drawn more than once
into a training dataset.

Q2: For bootstrap resampling applied to a dataset with N
observations, derive an expression for the fraction of data in the
original dataset drawn in an average bootstrap sample. What is this

fraction as N →∞? [Hint:
(
1− 1

N

)N → e−1 , as N →∞]
—–
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This is repeated until a large number of training datasets are
generated by this bootstrap procedure. During the random draws,
predictor and predictand data pairs are of course drawn together.

In the case of autocorrelated data, data segments about the length
of the autocorrelation time scale are drawn instead of individual
data points — i.e. if monthly data is found to be autocorrelated
over the whole season, then one would draw an entire season of
monthly data altogether.

In the bagging approach, one model can be built from each training
set, so from the large number of training sets, an ensemble of
models is derived. By averaging the model output from all individual
members of the ensemble, a final output is obtained.
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[If the problem is nonlinear classification instead of regression, the
final output is chosen by voting, i.e. the class most widely selected
by the individual members of the ensemble is chosen as the final
output.]

Incidentally, the data not selected during the bootstrap resampling
are not wasted, as these out-of-bag (OOB) samples can be used as
validation data. For instance, to avoid overfitting, these validation
data can be used in the early stopping approach, i.e. NN model
training is stopped when the model’s error variance calculated using
validation data started to increase.

Finally, from the distribution of the ensemble member solutions,
statistical significance can be estimated easily — e.g. from the
ensemble distribution, one can simply examine if at least 95% of the
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ensemble members give a value greater than zero, or less than zero,
etc.

Next compare the error of the ensemble average to the average error
of the individual models in the ensemble.

Let yT(x) denote the true relation, ym(x) the mth model relation in
an ensemble of M models, and y (M)(x) the ensemble average.

7 / 31



The expected squared error of the ensemble average is

E[(y (M) − yT)2] = E

( 1

M

M∑
m=1

ym − yT

)2


= E

( 1

M

∑
m

(ym − yT)

)2


=
1

M2
E

(∑
m

εm

)2
 , (1)

where εm ≡ ym − yT is the error of the mth model. Cauchy
inequality says: (

M∑
m=1

εm

)2

≤ M
M∑

m=1

ε2m . (2)
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Q3: Prove Cauchy’s inequality for the special case M = 2, i.e. prove
that

(ε1 + ε2)2 ≤ 2(ε21 + ε22).

—–

1

M2
E

( M∑
m=1

εm

)2
 ≤ 1

M
E

[
M∑

m=1

ε2m

]
=

1

M

M∑
m=1

E[ε2m ] . (3)

Eq.(1) => E[(y (M) − yT)2] ≤ 1

M

M∑
m=1

E[ε2m ]. (4)

This proves that the expected squared error of the ensemble average
is less than or equal to the average expected squared error of the
individual models in the ensemble, thereby providing the rationale
for using ensemble averages instead of individual models.
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Note this is a general result, as it applies to an ensemble of
dynamical models (e.g. general circulation models) as well as an
ensemble of empirical models (e.g. NN models), or even to a mixture
of completely different dynamical and empirical models. Perhaps
this result is not so surprising, since in social systems we do find
that, on average, democracy is better than the average dictatorship!

Next we restrict to a single model for generating the ensemble
members, e.g. by training the model with various bootstapped
resampled datasets, or performing nonlinear optimization with
random initial parameters.

Repeat the variance and bias error calculation for an ensemble of
models. Again, let E [·] denote the expectation or ensemble average
over all datasets D (or over all random initial weights). Note E [·] is
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distinct from E[·], the expectation over x. Since all members of the
ensemble were generated from a single model, we have for all the
m = 1, . . . ,M members,

E [ym] = E [y ] ≡ ȳ . (5)

The expected squared error of the ensemble average y (M) is

E [(y (M) − yT)2] = E [(y (M) − ȳ + ȳ − yT)2],

= E [(y (M) − ȳ)2] + E [(ȳ − yT)2] + 2E [(y (M) − ȳ)(ȳ − yT)],

= E [(y (M) − ȳ)2] + (ȳ − yT)2 + 2(ȳ − yT) E [y (M) − ȳ ],

= E [(y (M) − ȳ)2] + (ȳ − yT)2, (6)

as E [y (M) − ȳ ] = 0.
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The first term, E [(y (M) − ȳ)2], is the variance error,
while the second term, (ȳ − yT)2, is the bias error.
Note that the variance error depends on M , the ensemble size,
whereas the bias error does not.

Let us examine the variance error:

E [(y (M) − ȳ)2] = E

( 1

M

M∑
m=1

ym − ȳ

)2


= E

( 1

M

M∑
m=1

(ym − ȳ)

)2
 =

1

M2
E

(∑
m

δm

)2
 , (7)

where δm = ym − ȳ .
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If the errors of the members are uncorrelated, i.e. E [δmδn] = 0 if
m 6= n, then

1

M2
E

(∑
m

δm

)2
 =

1

M2
E
[∑

m

δ2m

]
=

1

M
E [δ2], (8)

as E [δ2m] = E [δ2], for all m.

Thus if the member errors are uncorrelated, the variance error of the
ensemble average is

E [(y (M) − ȳ)2] =
1

M
E [(y − ȳ)2], (9)

where the right hand side is simply the variance error of a single
member divided by M .
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Hence, the variance error of the ensemble average → 0 as M →∞.
Of course, the decrease in the variance error of the ensemble
average will not be as rapid as M−1 if the errors of the members are
correlated.

In summary, for the ensemble average, the variance error can be
decreased by increasing the ensemble size M , but the bias error is
unchanged.

This suggests that one should use models with small bias errors, and
then rely on the ensemble averaging to reduce the variance error. In
other words, one would prefer using models which overfit slightly to
models which underfit, as ensemble averaging can alleviate the
overfitting.
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Figure : The data (circles) are the signal, y = sin x (thick dash curve),
plus Gaussian noise (with the same standard deviation as the signal).
MLP NN from Matlab (using 1 hidden layer of 10 neurons, and
Levenberg-Marquardt optimization without regularization) was run 30
times from random initial weights. Four individual runs are shown as thin
curves, and the ensemble average over 30 runs as the thick curve.
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Q4: You have 50 years of data, and you want to do a 25-fold
cross-validation of your MLP NN model. You also want to run an
ensemble of 30 runs with random initial weights for the NN model.
How many NN model runs do you have to perform?
—–

So far, all the members are equally weighted in forming the ensemble
average. A more sophisticated way to form the ensemble average is
to use an MLP NN model to perform nonlinear ensemble averaging.

The MLP NN has M inputs and 1 output. The M inputs simply
receive the outputs from the M trained ensemble members, while
the output is trained towards the same target data used in training
the individual ensemble members.
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Krasnopolsky (2007) used an ensemble of 10 MLP NN models to
emulate sea level height anomalies using state variables from an
ocean model as input. The output of the 10 ensemble members
were then nonlinearly averaged by another MLP NN and compared
with simple averaging.
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Figure : Scatter plot of the model bias versus the error standard
deviation (SD) for the 10 individual ensemble members (asterisks), the
simple ensemble average (cross) and the nonlinear ensemble average by
NN (diamond). [Reproduced from Krasnopolsky (2007)]

The simple ensemble average has smaller error standard deviation
than all 10 individuals, but its bias is just the average of the bias of
the individuals. In contrast, the nonlinear ensemble average by NN
results in even smaller error standard deviation plus a considerable
reduction in the bias.

Another ensemble/committee approach called boosting differs from
other ensemble methods such as bagging in that the models in the
ensemble are trained in sequence, with “improvement” from one
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model to the next, and the final output of the ensemble being a
weighted sum of the output from all its members.

The most popular boosting algorithm is AdaBoost (Freund and
Schapire, 1997), developed originally for classification problems, but
also extended to regression problems.

The key idea is that in the mth model there are some data points
which are not well predicted, so when we train the next model, we
increase the weighting of these difficult data points in our objective
function.
This type of learning approach is used by students, e.g. if a student
does poorly in some courses, he will put more effort into the difficult
courses in order to improve his overall grade.
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Since boosting tries to improve on predicting the difficult data
points, we must ensure that the difficult data points are of sound
quality, i.e. the data are not simply wrong!

The outline of the boosting approach is as follows:
Let w

(m)
n denote the weight placed on the nth data point

(n = 1, . . . ,N) in the objective function of the mth model
(m = 1, . . . ,M). For the first model, we use uniform weight, i.e.

w
(1)
n = 1/N .

We next generate a sequence of models: For model m, the weights
w

(m)
n are increased relative to w

(m−1)
n for a data point n if this point

was poorly predicted by model m − 1.
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The final output of the M models is a weighted sum of the
individual model outputs, with the weights am being larger for the
better models.

8.8 Linearization from time-averaging [Book, Sect. 6.10]

Time-averaging is widely used to reduce noise in the data; however,
it also linearizes the relations in the dataset.

In a study of the nonlinear relation between the precipitation rate
(the predictand) and 10 other atmospheric variables (the predictors
x) in the NCEP/NCAR reanalysis data (Kalnay et al., 1996), Yuval
and Hsieh (2002) examined the daily, weekly and monthly averaged
data by nonlinear multiple regression using the MLP NN model.
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They discovered that the strongly nonlinear relations found in the
daily data became dramatically reduced by time-averaging to the
almost linear relations found in the monthly data.

Central limit theorem from statistics tells us that by averaging data,
the data distribution approaches the (multivariate) Gaussian
distribution.

To visualize this effect, consider the synthetic dataset

y = x + x2 + ε, (10)

where x is a Gaussian variable with unit standard deviation and ε is
Gaussian noise with a standard deviation of 0.5. Averaging this
‘daily’ data over 7 days and over 30 days reveals a dramatic
weakening of the nonlinear relation:
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Figure : Effects of time-averaging on a nonlinear relation. (a) Synthetic
‘daily’ data from a quadratic relation between x and y , and the data
time-averaged over (b) 7 observations and (c) 30 observations. The
probability density distribution of y is shown in (d) for cases (a), (b) and
(c).
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With real data, there is autocorrelation in the time series, so the
monthly data will be effectively averaging over far fewer than 30
independent observations as done in this synthetic dataset.

If the data has strong autocorrelation, so that the integral time scale
from the autocorrelation function is not small compared to the
time-averaging window, then there are actually few independent
observations used during the time-averaging, and the central limit
theorem does not apply.

While time-averaging tends to reduce the nonlinear signal, it also
smooths out the noise. Depending on the type of noise (and
perhaps on the type of nonlinear signal), it is possible that
time-averaging may nevertheless enhance the detection of a
nonlinear signal above the noise for some datasets.
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Be aware that time-averaging could have a major impact on the
modelling or detection of nonlinear empirical relations, and that a
nonlinear machine learning method often outperforms a linear
method in weather applications, but fails to do so in climate
applications.

Due to recent interest in the climate of extremes, climate is
described by more than just the averaging of daily data. E.g. annual
indices of 10th percentile of daily minimum temperature, 90th
percentile of daily maximum temperature, etc. Nonlinearity is better
preserved in such extreme climate indices.

8.9 Regularization of linear models (Hastie et al., 2009,
Sect.3.4)
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Regularization (weight penalty) is widely used to prevent overfitting
in nonlinear models like MLP NN. It is also used in linear regression
in place of stepwise regression to alleviate overfitting from having
too many predictors. I.e. instead of deleting some predictors,
regularization assigns very small (or zero) weights to some
predictors.

First remove the mean for each predictor variable xl (l = 1, . . . ,m)
and for the response variable y. Multiple linear regression is

yi =
m∑
l=1

xilwl + ei , i = 1, . . . , n, (11)

with n observations, ei the errors or residuals, and wl the regression
coefficients (no constant coefficient w0 due to the mean removal).
Rewrite as

y = Xw + e . (12)
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Add weight penalty (with parameter p) to objective function J :

J =
n∑

i=1

(
yi −

m∑
l=1

xilwl

)2
+ p

m∑
l=1

w 2
l . (13)

Setting gradient of J to zero yields [Book, Eqs.(7.10)-(7.14)]:

w = (XTX + pI)−1XTy , (14)

with identity matrix I. This is called ridge regression (or Tikhonov
regularization). If p = 0, one gets back multiple linear regression.

Even better is lasso (least absolute shrinkage and selection
operator), where the mean absolute norm is used (instead of the
mean squared norm) for weight penalty

J =
1

2

n∑
i=1

(
yi −

m∑
l=1

xilwl

)2
+ p

m∑
l=1

|wl | . (15)
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Lasso will set more weights to zero than ridge regression, and tends
to predict better (Hastie et al., 2009, Sect.3.4). Delete predictors
with zero weights, hence useful in predictor selection.

Matlab codes

For ridge regression:
http://www.mathworks.com/help/stats/ridge.html

For lasso:
http://www.mathworks.com/help/stats/lasso.html

For Bayesian NN:
www.mathworks.com/help/toolbox/nnet/ref/trainbr.html

An alternative for BNN is the Netlab library written in Matlab:
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www1.aston.ac.uk/eas/research/groups/ncrg/resources/

netlab/downloads

See book “Netlab” by Nabney, Chap.9, esp. Sect. 9.6.1.
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