
Chap.8 Learning and generalization [Book, Chap. 6]

Avoid using a model with too little flexibility to model the underlying
nonlinear relation adequately (underfitting), and using a model with
too much flexibility, which readily fits to the noise (overfitting).

8.1 Mean squared error and maximum likelihood [Book,
Sect.6.1]

In multi-layer perceptron (MLP) NN models, minimizing the
objective function J involves minimizing the mean squared error
(MSE) between the model outputs y and the target data yd, i.e.

J =
1

N

N∑
n=1

{
1

2

∑
k

[y
(n)
k − y

(n)
dk]2

}
, (1)

1 / 30

where there are k = 1, . . . ,M output variables yk , and there are
n = 1, . . . ,N observations. While minimizing the MSE is quite
intuitive and is used in many types of models besides NN (e.g. linear
regression), it can be derived from the broader principle of maximum
likelihood under the assumption of Gaussian noise distribution.

If we assume the multivariate target data ydk are independent
random variables, then the conditional probability distribution of yd
given predictors x can be written as

p(yd|x) =
M∏
k=1

p(ydk |x). (2)

The target data are made up of noise εk plus an underlying signal
(which we are trying to simulate by a model with parameters w and
outputs yk), i.e.

ydk = yk(x;w) + εk . (3)

2 / 30

We assume that the noise εk obeys a Gaussian distribution with zero
mean and standard deviation σ, with σ independent of k and x, i.e.

p(ε) =
M∏
k=1

p(εk) =
1

(2π)M/2σM
exp

(
−
∑

k ε
2
k

2σ2

)
. (4)

From (3) and (4), the conditional probability distribution

p(yd|x;w) =
1

(2π)M/2σM
exp

[
−
∑

k(yk(x;w)− ydk)2

2σ2

]
. (5)

The principle of maximum likelihood says: If we have a conditional
probability distribution p(yd|x;w), and we have observed values yd
given by the dataset D and x by the dataset X , then the parameters
w can be found by maximizing the likelihood function p(D|X ;w),
i.e. the parameters w should be chosen so that the likelihood of

3 / 30

observing D given X is maximized. Note that p(D|X ;w) is a
function of w only as D and X are known.

The datasets X and D contain the observations x(n) and y(n)d , with
n = 1, . . . ,N . The likelihood function L is then

L = p(D|X ;w) =
N∏

n=1

p
(
yd

(n)|x(n);w
)
. (6)

Instead of maximizing the likelihood function, it is more convenient
to minimize the negative log of the likelihood, as the logarithm

4 / 30

function is a monotonic function. From (5) and (6), we end up
minimizing the following objective function with respect to w:

J̃ = − ln L =
1

2σ2

N∑
n=1

M∑
k=1

[
yk(x(n);w)− y

(n)
dk

]2
+NM lnσ +

NM

2
ln(2π). (7)

Since the last two terms are independent of w, they are irrelevant to
the minimization process and can be omitted. Other than a
constant multiplicative factor, the remaining term in J̃ is the same
as the MSE objective function J in (1). Hence minimizing MSE is
equivalent to maximizing likelihood assuming Gaussian noise
distribution.

8.2 Objective functions and robustness [Book, Sect. 6.2]

5 / 30

We examine where the model outputs converge to, under the MSE
objective function (1) in the limit of infinite sample size N with a
flexible enough model (Bishop, 1995).

The MSE is not the only way to incorporate information about the
error between the model output yk and the target data ydk into J .
We could minimize the mean absolute error (MAE) instead of the
MSE, i.e. define

J =
1

N

N∑
n=1

∑
k

∣∣∣y (n)
k − y

(n)
dk

∣∣∣ . (8)

Any data point ydk lying far from the mean of the distribution of ydk
would exert far more influence in determining the solution under the
MSE objective function than in the MAE objective function. We will

6 / 30

show that unlike the MAE, the MSE objective function is not robust
to outliers (i.e. data points lying far away from the mean, which
might have resulted from defective measurements or from
exceptional events).

First study the MSE objective function (1). With infinite N , the
sum over the N observations in the objective function can be
replaced by integrals, i.e.

J =
1

2

∑
k

∫ ∫
[yk(x;w)− ydk]2 p(ydk , x) dydk dx , (9)

where x and w are the model inputs and model parameters
respectively, and p(ydk , x), a joint probability distribution. Since

p(ydk , x) = p(ydk |x) p(x) , (10)

7 / 30

where p(x) is the probability density of the input data, and p(ydk |x)
is the probability density of the target data conditional on the
inputs, we have

J =
1

2

∑
k

∫ ∫
[yk(x;w)− ydk]2 p(ydk |x) p(x) dydk dx . (11)

Next introduce the following conditional averages of the target data:

〈ydk |x〉 =

∫
ydk p(ydk |x) dydk , (12)

〈y 2
dk |x〉 =

∫
y 2
dk p(ydk |x) dydk . (13)

8 / 30

After some algebra (see Book), we can write

J =
1

2

∑
k

∫
[yk(x;w)− 〈ydk |x〉]2p(x)dx

+
1

2

∑
k

∫
[〈y 2

dk |x〉 − 〈ydk |x〉2] p(x)dx. (14)

The second term does not depend on the model output yk , hence it
is independent of the model weights w. Thus during the search for
the optimal weights to minimize J , the second term can be ignored.

In the first term of (14), the integrand cannot be negative, so the
minimum of J occurs when this first term vanishes, i.e.

yk(x;wopt) = 〈ydk |x〉, (15)

9 / 30

where wopt denotes the weights at the minimum of J . This is a very
important result as it shows that the model output is simply the
conditional mean of the target data. Thus in the limit of infinite
number of observations in the dataset, and with the use of a flexible
enough model, the model output yk for a given input x is the
conditional mean of the target data at x.

Diagram below shows the model output y as the conditional mean
of the target data yd, with the conditional probability distribution
p(yd|x) displayed at x1 and at x2.

10 / 30

The derivation of this result is quite general, as it does not actually
require the model mapping yk(x;w) to be restricted to NN models.
This result also shows that in nonlinear regression problems, in the
limit of infinite sample size, overfitting cannot occur, as the model
output converges to the conditional mean of the target data. In

11 / 30

practice, in the absence of outliers, overfitting ceases to be a
problem when the number of independent observations is much
larger than the number of model parameters.

Next, we turn to the MAE objective function (8). Under infinite N ,
(8) becomes

J =
∑
k

∫ ∫
|yk(x;w)− ydk | p(ydk |x) p(x) dydk dx . (16)

This can be rewritten as

J =
∑
k

∫
J̃k(x) p(x) dx , (17)

where

J̃k(x) ≡
∫
|yk(x;w)− ydk | p(ydk |x) dydk . (18)

12 / 30

J̃k(x) ≥ 0 since the integrand of (18) is non-negative. Also J in (17)
is minimized when J̃k(x) is minimized. To minimize J̃k(x) with
respect to the model output yk , we set

∂J̃k
∂yk

=

∫
sgn(yk(x;w)− ydk) p(ydk |x) dydk = 0 , (19)

where the function sgn(z) gives +1 or −1 depending on the sign of
z . For this integral to vanish, the equivalent condition is∫ yk

−∞
p(ydk |x) dydk −

∫ ∞
yk

p(ydk |x) dydk = 0 , (20)

which means that yk(x;w) has to be the conditional median, so that
the conditional probability density integrated to the left of yk equals
that integrated to the right of yk .

13 / 30

The median is robust to outliers whereas the mean is not. Thus in
the presence of outliers, the MSE objective function can produce
solutions which are strongly influenced by outliers, whereas the MAE
objective function can largely eliminate this undesirable property
(since in practice an infinite N is not attainable, therefore using
MAE does not completely eliminate this problem). However, a
disadvantage of the MAE objective function is that it is less
sensitive than the MSE objective function, so it may not fit the data
as closely.

8.3 Variance and bias errors [Book, Sect. 6.3]

Two types of errors when fitting a model to a dataset — variance
error and bias error.

14 / 30

To simplify the discussion, assume the model output is a single
variable y = f (x). The true relation is yT = fT(x).

The model was trained over a dataset D. Let E [·] denote the
expectation or ensemble average over all datasets D. Note that E [·]
is not the expectation E[·] over x, so E [y] ≡ ȳ is still a function of x.

Thus the error of y is

E [(y − yT)2] = E [(y − ȳ + ȳ − yT)2]

= E [(y − ȳ)2] + E [(ȳ − yT)2] + 2E [(y − ȳ)(ȳ − yT)]

= E [(y − ȳ)2] + (ȳ − yT)2 + 2(ȳ − yT) E [y − ȳ]

= E [(y − ȳ)2] + (ȳ − yT)2, (21)

since E [y − ȳ] = 0.

15 / 30

The first term, E [(y − ȳ)2], is the variance error , as it measures the
departure of y from its expectation ȳ .

The second term, (ȳ − yT)2, is the bias error , as it measures the
departure of ȳ from the true value yT.

The variance error tells us how much the y estimated from a given
dataset D can be expected to fluctuate about ȳ , the expectation
over all datasets D. Even with this fluctuation caused by the
sampling for a particular dataset D removed, one has the bias error
indicating the departure of the model expectation from the true
value.

16 / 30

y

x

y
T

(a)

y

x

y
T

(b)

Figure : A schematic diagram illustrating the results from using a model
with (a) few adjustable parameters and (b) many adjustable parameters
to fit the data. The model fit y is shown by a solid line and the true
relation yT by the dashed line. In (a), the bias error is large as y from a
linear model is a poor approximation of yT, but the variance error is
small. In (b), the bias error is small but the variance error is large, since
the model is fitting to the noise in the data.

17 / 30

The art of machine learning hinges on a balanced trade-off between
variance error and bias error.

8.4 Regularization [Book, Sect. 6.5]

To prevent overfitting in MLP NN models, the most common
approach is via regularization of the objective function, i.e. by
adding weight penalty (also known as weight decay) terms to the
objective function.

The objective function is now

J =
1

N

N∑
n=1

{
1

2

∑
k

[
y
(n)
k − y

(n)
dk

]2}
+ P

1

2

∑
j

w 2
j , (22)

18 / 30

where wj presents all the weight (and offset) parameters, and P , a
positive constant, is the weight penalty parameter or regularization
parameter .

P is also referred to as a hyperparameter as it exerts control over
the weight parameters — during nonlinear optimization of the
objective function, P is held constant while the optimal values of
the other parameters are being computed.

With a positive P , the selection of larger |wj | during optimization
would increase the value of J , so larger |wj | values are penalized.
Thus choosing a larger P will more strongly suppress the selection of
larger |wj | by the optimization algorithm.

19 / 30

For sigmoidal activation functions such as tanh, the effect of weight
penalty can be illustrated as follows: For |wx | � 1, the leading term
of the Taylor expansion gives

y = tanh(wx) ≈ wx , (23)

i.e. the nonlinear activation function tanh is approximated by a
linear activation function when the weight |w | is penalized to be
small and x is reasonably scaled.

Using a larger P to penalize weights diminishes the nonlinear
modelling capability of the model, thereby avoiding overfitting.

With the weight penalty term in (22), it is essential that the input
variables have been scaled to similar magnitudes. The reason is that
if e.g. the first input variable is much larger in magnitude than the
second, then the weights multiplied to the second input variable will

20 / 30

have to be much larger in magnitude than those multiplied to the
first variable, in order for the second input to exert comparable
influence on the output as the first input. However the same weight
penalty parameter P acts on both sets of weights, thereby greater
reducing the influence of the second input variable since the
associated weights are not allowed to take on large values.

Similarly, if there are multiple output variables, the target data for
different variables should be scaled to similar magnitudes.

Hence when dealing with real unbounded variables, standardize the
data first, i.e. each variable has its mean value subtracted, and then
divided by its standard deviation.

After the NN model has been applied to the standardized variables,
each output variable is rescaled to the original dimension, i.e.

21 / 30

multiply by the original standard deviation and add back the original
mean value.

What value should one choose for the weight penalty parameter? A
common way to select P is by validation. The dataset is divided
into training data and validation data. Models are trained using the
training data for a variety of P values, e.g.
P = 3, 1, 0.3, 0.1, 0.03, 0.01, . . ., or P = 2−p (p = −1, 0, 1, 2, . . .).

Model performance over the validation data is then used to select
the optimal P value.

Figure below illustrates the model error (e.g. the MSE) for the
training data (solid curve) and for the validation data (dashed
curve) as a function of the weight penalty parameter P . The

22 / 30

minimum in the dashed curve gives the optimal P value (as marked
by the vertical dotted line).

23 / 30

For an MLP NN model with a single hidden layer, where there are
m1 inputs, m2 hidden neurons and m3 output neurons, we have
assumed that m2 is large enough so that the model has enough
flexibility to accurately capture the underlying relation in the
dataset. In practice, we may not know what m2 value to use. Hence
instead of a single loop of model runs using a variety of P values, we
may also need a second loop with m2 = 1, 2, 3, The run with
the smallest validation error gives the best P and m2 values.

8.5 Cross-validation [Book, Sect. 6.6]

When there are plentiful data, reserving some data for validation
poses no problem. Unfortunately, data are often not plentiful.
Cross-validation is a technique which allows the entire dataset to be
used for validation.

24 / 30

Given a data record, K -fold cross-validation involves dividing the
record into K (approximately equal) segments. One segment is
reserved as validation data, while the other K − 1 segments are used
for model training. This process is repeated K times, so that each
segment of the data record has been used as validation data.

Thus a validation error can be computed for the whole data record.
A variety of models are run, with different number of model
parameters and different weight penalty. Based on the lowest
validation error over the whole data record, one can select the best
model among the many runs.

E.g. the data record is 50 years long. In 5-fold cross-validation, the
record is divided into 5 segments, i.e. years 1-10, 11-20, 21-30,
31-40, 41-50.

25 / 30

First, reserve years 1-10 for validation, and train the model using
data from years 11-50.
Next reserve years 11-20 for validation, and train using data from
years 1-10 and 21-50.
This is repeated until the final segment of 41-50 is reserved for
validation, with training done using the data from years 1-40.

Q1: After you completed the 5-fold cross-validation, some new data
have become available. How would you make predictions with the
new data?
—–

If one has more computing resources, one can try 10-fold
cross-validation, where the 50 year record is divided into ten 5-year
segments.

26 / 30

At the extreme, one arrives at the leave-one-out cross-validation,
where the validation segment consists of a single observation. E.g.,
if the 50 year record contains monthly values, then there are 600
monthly observations, and a 600-fold cross-validation is the same as
the leave-one-out approach.

With time series data, the neighbouring observations in the data
record are often not independent of each other due to
autocorrelation.

If the dataset has a decorrelation time scale of 9 months, then
leaving a single monthly observation out for independent validation
would make little sense since it is well correlated with neighbouring
observations already used for training.
When there is autocorrelation in the time series data, then the
validation segments should be longer than the decorrelation time

27 / 30

scale, i.e. in this example, the validation segments should exceed 9
months.
Even then, at the boundary of a validation segment, there is still
correlation between the data immediately to one side which are used
for training and those to the other side used for validation.
Thus under cross-validation, autocorrelation can lead to an
underestimation of the model error over the validation data,
especially when using small validation segments.

Because validation data are used for model selection, i.e. for
choosing the best number of model parameters, weight penalty
value, etc., the model error over the validation data cannot be
considered accurate model forecast error, since the validation data
have already been involved in deriving the model.

28 / 30

To accurately assess the model forecast error, the model error needs
to be calculated over independent data not used in model training
or model selection. Thus the data record needs to be divided into
training data, validation data and “testing” (or verification) data for
measuring the true model forecast error.

One then has to do a double cross-validation, which can be quite
expensive computationally:
Again consider the example of a 50-year data record, where we want
to do a 10-fold cross-testing. We first reserve years 1-5 for testing
data, and use years 6-50 for training and validation. We then
implement 9-fold cross-validation over the data from years 6-50 to
select the best model, which we use to forecast over the testing
data.
Next, we reserve years 6-10 for testing, and perform a 9-fold
cross-validation over the data from years 1-5 and 11-50 to select the

29 / 30

best model (which may have different number of model parameters
and different weight penalty value than the model selected in the
previous cross-validation).
The process is repeated until the model error is computed over test
data covering the entire data record.

References:

Bishop, C. M. (1995). Neural Networks for Pattern Recognition.
Clarendon Pr., Oxford.

30 / 30

