
Ch.7 Nonlinear optimization [Book, Chap. 5]

To appreciate the vast difference between linear optimization and
nonlinear optimization, consider the relation

y = w0 +
L∑

l=1

wl fl , (1)

where fl = fl(x1, . . . , xm), and the polynomial fit is a special case.

Although the response variable y is nonlinearly related to the
predictor variables x1, . . . , xm (as fl is in general a nonlinear
function), y is a linear function of the parameters {wl}, and the
objective function

J =
∑

(y − yd)2 , (2)

1 / 24



is a quadratic function of the {wl}. This means that the objective
function J(w0, . . . ,wL) is a parabolic surface, which has a single
minimum, the global minimum.

When y is a nonlinear function of {wl}, the objective function
surface is in general filled with numerous hills and valleys, i.e. many
local minima besides the global minimum. (If there are symmetries
among the parameters, there can even be multiple global minima).

Thus nonlinear optimization involves finding a global minimum
among many local minima.

Nonlinear optimization is vastly more tricky than linear optimization,
with no guarantee that the algorithm actually finds the global
minimum, as it may become trapped by a local minimum.

2 / 24



For NN models, find the optimal parameters w which minimize J .

Common to solve the minimization problem using an iterative
procedure.
Suppose the current approximation of the solution is w0. A Taylor
series expansion of J(w) around w0 yields

J(w) = J(w0)+(w−w0)T∇J(w0)+
1

2
(w−w0)T H (w−w0)+ · · · ,

(3)
where ∇J has components ∂J/∂wi , and H is the Hessian matrix,
with elements

(H)ij ≡
∂2J

∂wi∂wj

∣∣∣∣
w0

. (4)

If w0 is a minimum, then ∇J(w0) = 0, and (3) (with the higher
order terms ignored) reduces to an equation describing a parabolic
surface.

3 / 24



Hence, near a minimum, assuming the Hessian matrix is nonzero,
the objective function has an approximately parabolic surface.

Applying the gradient operator to (3), we obtain

∇J(w) = ∇J(w0) + H (w −w0) + · · · (5)

Next, derive an iterative scheme for finding the optimal w, with w0

the current approximation of the optimal solution.

At the optimal w, ∇J(w) = 0, => (5), with higher order terms
ignored, yields

H (w −w0) = −∇J(w0) , i.e. w = w0 −H−1∇J(w0) . (6)

4 / 24



This suggests the following iterative scheme for proceding from step
k to step k + 1:

wk+1 = wk −H−1k ∇J(wk) . (7)

This is Newton’s method. In the 1-dimensional case, (7) reduces to
the familiar form

wk+1 = wk −
J ′(wk)

J ′′(wk)
, (8)

for finding a root of J ′(w) = 0, where the prime and double prime
denote respectively the first and second derivatives.

In the multi-dimensional case, if w is of dimension L, then the
Hessian matrix Hk is of dimension L× L. Computing H−1k , the
inverse of an L× L matrix, may be computational too costly.
Simplification is needed, => quasi-Newton methods.

5 / 24



7.1 Gradient descent methods [Book, Sect. 5.1]

The gradient descent or steepest descent method was used in the
original back-propagation algorithm, where the parameters are
updated at the kth step by

wk+1 = wk − η∇J(wk) , (9)

with η (a positive scalar) being the learning rate.

Clearly (9) is a major simplification of Newton’s method (7), with
the learning rate η replacing H−1, the inverse of the Hessian matrix.

One also tries to reach the optimal w by descending along the
negative gradient of J in (9), hence the name gradient descent or

6 / 24



steepest descent, as the negative gradient gives the direction of
steepest descent.

An analogy is a hiker trying to descend in thick fog from a mountain
to the bottom of a valley by taking the steepest descending path.
Alas, this approach is surprisingly inefficient.

The learning rate η can be either (i) a fixed constant, or (ii)
calculated by a line minimization algorithm.
In (i), one takes a step of fixed size along the direction of the
negative gradient of J .

In (ii), proceed along the negative gradient of J until reaching the
minimum of J along that direction.

7 / 24



Figure : The gradient descent approach starts from the parameters wk

estimated at step k of an iterative optimization process. The descent
path dk is chosen along the negative gradient of the objective function J,
which is the steepest descent direction. Note that dk is perpendicular to
the J contour where wk lies. The descent along dk proceeds until it is
tangential to a second contour at wk+1, where the direction of steepest
descent is given by −∇J(wk+1). The process is iterated.

8 / 24



More precisely, suppose at step k , we have estimated parameters
wk . We then descend along the negative gradient of the objective
function, i.e. travel along the direction

dk = −∇J(wk) . (10)

We then travel along dk , with our path described by wk + ηdk , until
we reach the minimum of J along this direction.

Going further along this direction would ascending rather than
descending, so we should stop at this minimum of J along dk , which
occurs at

∂

∂η
J(wk + ηdk) = 0 , (11)

thereby yielding the optimal step size η. Differentiation by η gives

dT
k ∇J(wk + ηdk) = 0 . (12)

9 / 24



With

wk+1 = wk + ηdk , (13)

we can rewrite Eq. (12) as

dT
k ∇J(wk+1) = 0 , i.e. dk ⊥ ∇J(wk+1). (14)

But since dk+1 = −∇J(wk+1), we have

dT
k dk+1 = 0 , i.e. dk ⊥ dk+1 . (15)

As the new direction dk+1 is orthogonal to the previous direction dk ,
=> an inefficient zigzag path of descent.

10 / 24



Figure : The gradient descent method with (a) line minimization (i.e.
optimal step size η), (b) fixed step size which is too small, (c) fixed step
size which is too large, and (d) momentum, which reduces the zigzag
behaviour during descent.

11 / 24



The other alternative of using fixed step size is also inefficient, as a
small step size results in taking too many steps, while a large step
size results in an even more severely zigzagged path of descent.

One way to reduce the zigzag in the gradient descent scheme is to
add ‘momentum’ to the descent direction, so

dk = −∇J(wk) + µdk−1 , (16)

with µ the momentum parameter.
The momentum or memory of dk−1 prevents the new direction dk to
be orthogonal to dk−1, thereby reducing the zigzag.
The next estimate for the parameters in the momentum method is
also given by (13).

The conjugate gradient method [Book, Sect. 5.2], automatically
chooses the momentum parameter µ.

12 / 24



Other nonlinear optimization methods: Quasi-Newton method
[Book, Sect. 5.3] and Levenberg-Marquardt method [Book, Sect.
5.4].

All 3 are better than the steepest descent method.

7.2 Evolutionary computation and genetic algorithms [Book,
Sect. 5.5]

All optimization methods presented so far belong to the class of
methods known as deterministic optimization, in that each step of
the optimization process is determined by explicit formulas.
While such methods tend to converge to a minimum efficiently, they
often converge to a nearby local minimum.

13 / 24



To find a global minimum, one usually has to introduce some
stochastic element into the search.

A simple way is to repeat the optimization process many times, each
starting from different random initial weights. These multiple runs
will find multiple minima, and one hopes that the lowest minimum
among them is the desired global minimum.

There is no guarantee that the global minimum has been found.
Nevertheless by using a enough large number of runs and broadly
distributed random initial weights, the global minimum can usually
be found with such an approach.

Unlike deterministic optimization, stochastic optimization methods
repeatedly introduce randomness during the search process to avoid

14 / 24



getting trapped in a local minimum. Such methods include
simulated annealing and evolutionary computation.

Intelligence has emerged in Nature via biological evolution, so it is
not surprising that evolutionary computation (EC) (Fogel, 2005) has
become a significant branch of Computational Intelligence/Artificial
Intelligence.

Among EC methods, genetic algorithms (GA) (Haupt and Haupt,
2004) were inspired by biological evolution where cross-over of genes
from parents and genetic mutations results in a stochastic process
which can lead to superior descendants after many generations.

The weight vector w of a model can be treated as a long strand of
DNA, and an ensemble of solutions is treated like a population of
organisms.

15 / 24



A part of the weight vector of one solution can be exchanged with a
part from another solution to form a new solution, analogous to the
cross-over of DNA material from two parents.

E.g., two parents have weight vectors w and w′. A random position
is chosen (in this example just before the third weight parameter)
for an incision, and the second part of w′ is connected to the first
part of w and vice versa in the offsprings, i.e.

[w1,w2,w3,w4,w5,w6] [w ′1,w
′
2,w3,w4,w5,w6]

−cross-over→ (17)

[w ′1,w
′
2,w

′
3,w

′
4,w

′
5,w

′
6] [w1,w2,w

′
3,w

′
4,w

′
5,w

′
6]

16 / 24



Genetic mutation can be simulated by randomly perturbing one of
the weights wj in the weight vector w, i.e. randomly choose a j and
replace wj by wj + ε for some random ε (usually a small random
number).

These two processes introduce many new offsprings, but only the
relatively fit offsprings have a high probability of surviving to
reproduce. With the “survival of the fittest”principle pruning the
offsprings, successive generations eventually converge towards the
global optimum.

One must specify a fitness function f to evaluate the fitness of the
individuals in a population. If for the ith individual in the population,
its fitness is f (i), then a fitness probability P(i) can be defined as

P(i) =
f (i)∑N
i=1 f (i)

, (18)

17 / 24



where N is the total number of individuals in a population.

Individuals with high P will be given greater chances to reproduce,
while those with low P will be given greater chances to die off.

The basic GA structure:
(i) Choose the population size (N) and the number of generations
(Ng ). Initialize the weight vectors of the population.
Repeat the following steps (ii)-(v) Ng times:
(ii) Calculate the fitness function f and the fitness probability P for
each individual in the population.
(iii) Select a given number of individuals from the population, where
the chance of an individual getting selected is given by its fitness
probability P .

18 / 24



(iv) Duplicate the weight vectors of these individuals, then apply
either the cross-over or the mutation operation on the various
duplicated weight vectors to produce new offsprings.
(v) To keep the population size constant, individuals with poor
fitness are selected (based on the probability 1− P) to die off, and
are replaced by the new offsprings. (The fittest individual is never
chosen to die).

Finally, after Ng generations, the individual with the greatest fitness
is chosen as the solution.

To monitor the evolutionary progress over successive generations,
one can check the average fitness of the population, by averaging
the fitness f over all individuals in the population.

19 / 24



Q1: For the MLP NN model, you want to replace the nonlinear
optimization using gradient descent methods by GA instead. What
should the fitness function be?
—–
In general, deterministic optimization using gradient descent
methods would converge much quicker than stochastic optimization
methods such as GA.

Three advantages with GA:
(1) In problems where the fitness function cannot be expressed in
closed analytic form, gradient descent methods cannot be used
effectively, whereas GA works well.
(2) When there are many local optima in the fitness function,
gradient descent methods can be trapped too easily.

20 / 24



(3) GA can utilize parallel processors much more readily than
gradient descent algorithms, since in GA different individuals in a
population can be computed simultaneously on different processors.

In some NN applications, the individuals in a population do not all
have the same network topology, e.g. they can have different
number of hidden neurons. In such cases, GA can be used to find
not only the optimal weights but also the optimal network topology.

E.g. evolutionary algorithm for robotic soccer team on Youtube:
http://www.youtube.com/watch?v=cP035M_w82s&list=

FLZKRbMQD_bb7Xc1y8NLIHzA&index=2

http://www.hindawi.com/journals/jr/2010/841286/

21 / 24

http://www.youtube.com/watch?v=cP035M_w82s&list=FLZKRbMQD_bb7Xc1y8NLIHzA&index=2
http://www.youtube.com/watch?v=cP035M_w82s&list=FLZKRbMQD_bb7Xc1y8NLIHzA&index=2
http://www.hindawi.com/journals/jr/2010/841286/


Nonlinear optimization functions in Matlab

Deterministic optimization:
Matlab Nonlinear Optimization Toolbox:
fminunc (Quasi-Newton method)
www.mathworks.com/help/toolbox/optim/ug/fminunc.html

x = fminunc(f, x0)
starts at the point x0 and attempts to find a local minimum x of the
function f. x0 can be a scalar, vector, or matrix.

For NN models, Matlab Neural Network Toolbox has many options
for “training functions”
www.mathworks.com/help/toolbox/nnet/ref/f7-23438.html#

f7-9361

For instance, trainlm uses Levenberg-Marquardt backpropagation to
solve for the NN weights during training.

22 / 24

www.mathworks.com/help/toolbox/optim/ug/fminunc.html
www.mathworks.com/help/toolbox/nnet/ref/f7-23438.html##f7-9361
www.mathworks.com/help/toolbox/nnet/ref/f7-23438.html##f7-9361


Stochastic optimization:
Matlab Global Optimization Toolbox:
Genetic algorithm:
www.mathworks.com/products/global-optimization/

description4.html

x = ga(fitnessfcn, nvars)
finds a local unconstrained minimum, x, to the fitness function,
fitnessfcn.
nvars is the number of variables in x.
The fitness function, fitnessfcn, accepts a vector x of size
1-by-nvars, and returns a scalar evaluated at x.

23 / 24

www.mathworks.com/products/global-optimization/description4.html
www.mathworks.com/products/global-optimization/description4.html


References:

Fogel, D. (2005). Evolutionary Computation: Toward a New
Philosophy of Machine Intelligence. Wiley-IEEE, 3rd edition.

Haupt, R. L. and Haupt, S. E. (2004). Practical Genetic Algortihms.
Wiley.

Price, K. V., Storn, R. M., and Lampinen, J. A. (2005). Differential
Evolution: A Practical Approach to Global Optimization.
Springer, Berlin.

Storn, R. and Price, K. (1997). Differential evolution – A simple and
efficient heuristic for global optimization over continuous spaces.
Journal of Global Optimization, 11:341–359. DOI
10.1023/A:1008202821328.

24 / 24


