
Ch.6 Feed-forward neural network models

6.6 Multi-layer perceptron classifier [Book, Sect. 8.1]
The multi-layer perceptron (MLP) NN model can easily be modified
for classification problems.

If only 2 classes C1 and C2, take the target data yd to be a binary
variable, with yd = 1 denoting C1 and yd = 0 denoting C2.

Since the output is bounded in classification, instead of using a
linear activation function in the output layer, use the logistic
sigmoidal function.

1 / 30

With s denoting the logistic sigmoidal activation function, the MLP
network with one layer of hidden neurons hj has the output y given
by

y = s(
∑
j

w̃jhj + b̃), with hj = s(wj · x + bj) , (1)

where w̃j and wj are weights and b̃ and bj are offset or bias
parameters.

The output from a logistic sigmoidal function can be interpreted as
a posterior probability P(C1|x). [Book, Eq.(4.15)]
The logistic regression model is basically the MLP classifier without
a hidden layer.

2 / 30

In MLP regression problems, the objective function J minimizes the
mean squared error (MSE), i.e.

J =
1

2N

N∑
n=1

(yn − ydn)2 . (2)

This objective function can still be used in classification problems,
though there is an alternative objective function (the cross entropy
function) [Book, Sect. 8.1.1].

To classify the MLP output y as either 0 or 1, we invoke the
indicator function I , where

I (x) =

{
1 if x > 0 ,
0 if x ≤ 0 .

(3)

3 / 30

The classification is then given by

f (x) = I [y(x)− 0.5]. (4)

The classification error can be defined by

E =
1

2N

N∑
n=1

(f (xn)− ydn)2 . (5)

Classification of noiseless data by MLP with no. of hidden neurons
being (a) 2, (b) 3, (c) 4 and (d) 10. The 2 classes of data points
are indicated by the pluses and the circles, with the MLP decision
boundaries (solid curves) & theoretical boundaries (dashed):

4 / 30

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x1

x 2

(a) 2 hidden neurons

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x1

x 2

(b) 3 hidden neurons

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x1

x 2

(c) 4 hidden neurons

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x1

x 2

(d) 10 hidden neurons

5 / 30

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x1

x 2

(a) 2 hidden neurons

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x1

x 2

(b) 3 hidden neurons

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x1

x 2

(c) 4 hidden neurons

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x1

x 2

(d) 10 hidden neurons

Figure : Classification of noisy data by MLP: Overfitting occurred in (d).

6 / 30

6.7 Multi-class classification [Book, Sect. 8.2]
There are now c classes (c an integer > 2). E.g., the temperature is
to be classified as warm, normal and cold.

The target data typically use a 1-of-c coding scheme, e.g. warm is
(1, 0, 0), normal is (0, 1, 0) and cold is (0, 0, 1).

Use three model outputs, one for each class. If interested in the
outputs giving the posterior probability of each class, we will need a
generalization of the logistic sigmoidal function.

Since posterior probabilities are non-negative, model non-negative
outputs by exponential functions like exp(ak) for the kth model
output.

7 / 30

Require the posterior probabilities to sum to 1, so the kth model
output yk is

yk =
exp(ak)∑
k ′ exp(ak ′)

, (6)

which satisfies
∑

k yk = 1.

This normalized exponential activation function is called the softmax
activation function. The name softmax comes about because the
function is a smooth form of a “maximum” function — e.g. if
aj � ak , for all k 6= j , then yj ≈ 1 and all other yk ≈ 0.

Q3: Given three outputs, a1 = −1, a2 = 1 and a3 = 5. What does
Eq.(6) give for the values y1, y2 and y3?
Note: Matlab provides a function softmax, see
http://www.mathworks.com/help/nnet/ref/softmax.html

—–

8 / 30

softmax
http://www.mathworks.com/help/nnet/ref/softmax.html

6.8 Radial basis functions (RBF) [Book, Sect. 4.6]
Besides sigmoidal-shaped activation functions, radial basis functions
(RBF) involving Gaussian-shaped functions are also commonly used
in NN models.
RBF methods originated in the problem of exact interpolation,
where every input vector is required to be mapped exactly to the
corresponding target vector.

First, consider a 1-D target space. The output of the mapping f is a
linear combination of basis functions g

f (x) =
k∑

j=1

wj g(‖x− cj‖, σ) , (7)

where each basis function is specified by its centre cj and a width
parameter σ.

9 / 30

For exact interpolation, with n observations, there are k = n basis
functions to allow for the exact interpolation, and each cj

corresponds to one of the input data vectors.

Choices for the basis functions — the most common being the
Gaussian form

g(r , σ) = exp

(
− r 2

2σ2

)
. (8)

In NN applications, exact interpolation is undesirable, as it means an
exact fit to noisy data.

Choose k < n, i.e. use fewer (often far fewer) basis functions than
the number of observations. This prevents an exact fit, but allows a
smooth interpolation of the noisy data. By adjusting the number of

10 / 30

basis functions used, one can obtain the desired level of closeness of
fit. The mapping is now

f (x) =
k∑

j=1

wj g(‖x− cj‖, σj) + w0 , (9)

where (i) the centres cj are no longer given by the input data
vectors but are determined during training,
(ii) instead of using a uniform σ for all the basis functions, each
basis function has its own width σj , determined from training, and
(iii) an offset parameter w0 has been added.

If the output is multivariate, the mapping generalizes to

fi(x) =
k∑

j=1

wji g(‖x− cj‖, σj) + w0i , (10)

11 / 30

for the ith output variable.

Also common to use renormalized (or simply normalized) radial
basis functions, where the RBF g(‖x− cj‖, σj) in (9) is replaced by
the renormalized version

g(‖x− cj‖, σj)∑k
m=1 g(‖x− cm‖, σm)

. (11)

Using RBF can lead to holes, i.e. regions where the basis functions
all give little support:

12 / 30

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2
0.4
0.6
0.8

1

(a)

distance
R

BF

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2
0.4
0.6
0.8

1

(b)

distance

re
no

rm
al

iz
ed

 R
BF

Figure : (a) Radial basis functions (RBFs) and (b) renormalized RBFs.
Holes are present in (a), where RBFs with fixed width σ are used. This
problem is avoided in (b) with the renormalized RBFs.

13 / 30

While RBF neural networks can be trained like MLP networks by
back-propagation (termed adaptive RBFs), RBFs are most
commonly used in a non-adaptive manner, i.e. the training is
performed in two separate stages:
Stage 1 uses unsupervised learning to find the centres cj and widths
σj of the RBFs;
Stage 2 uses supervised learning via linear least squares to minimize
the MSE between the network output and the target data to solve
for wji and w0i .

Procedure of the non-adaptive RBF:
First choose k , the number of RBFs to be used. To find the centres
of the RBFs, one commonly uses K-means clustering , or
self-organizing maps (SOMs).

14 / 30

Next, estimate the width parameters σj . For the jth centre cj , find
the distance rj to the closest neighbouring centre, then set σj = αrj ,
with the factor α typically chosen in the range 1 ≤ α ≤ 3.

With the basis functions g(‖x− cj‖, σj) now determined, only need
to find the weights wji in the equation

fi(x) =
k∑

j=0

wji gj(x) , (12)

which is the same as (10), with gj(x) = g(‖x− cj‖, σj)
(j = 1, . . . , k), g0(x) = 1, and the summation starting from j = 0
to incorporate the offset parameter w0i .

15 / 30

The network output fi(x) is to approximate the target data yi(x) by
minimizing the MSE, which is simply a linear least squares problem.
In matrix notation, this can be written as

Y = GW + E , (13)

where (Y)li = yi(x(l)), (with l = 1, . . . n), (G)lj = gj(x(l)),
(W)ji = wji , and E is the error or residual in the least squares fit.

The linear least squares solution is given by

W = (GTG)−1GTY . (14)

In summary, the RBF NN is most commonly trained in two distinct
stages:

16 / 30

Stage 1 finds the centres and widths of radial basis functions by
unsupervised learning of the input data (with no consideration of the
output target data).
Stage 2 finds the best linear least squares fit to the output target
data (supervised learning).

Supervised learning in MLP requires nonlinear optimization =>
multiple minima in the objective function.
The supervised learning in RBF needs only optimization of linear
least squares => no multiple minima – advantage of RBF over MLP.

However, basis functions are computed in the RBF NN without
considering the output target data. This can be a major drawback,
especially when the input dimension is large:

17 / 30

Many of the input variables may have significant variance but have
no influence on the output target, yet these irrelevant inputs
introduce a large number of basis functions.
The second stage training may involve a very large, poorly
conditioned matrix problem — computationally very expensive or
even intractable.

6.9 Conditional probability distributions [Book, Sect. 4.7]
In many applications, one is less interested in a single predicted
value for y given by f (x) than in p(y |x), a conditional probability
distribution of y given x.

With p(y |x), one can easily obtain a single predicted value for y by
taking the mean, the median or the mode (i.e. the location of the
peak) of the distribution p(y |x). In addition, the distribution
provides an estimate of the uncertainty in the predicted value for y .

18 / 30

For managers of utility companies, the forecast that tomorrow’s air
temperature will be 25◦C is far less useful than the same forecast
accompanied by the additional information that there will be a 10%
chance that the temperature will be higher than 30◦C and 10%
chance lower than 22◦C.

Many types of non-Gaussian distributions are encountered in the
environment. E.g. precipitation and wind speed have distributions
which are skewed to the right, since one cannot have negative values
for precipitation and wind speed.

The gamma distribution and the Weibull distributions have been
commonly used to model precipitation and wind speed respectively
(Wilks, 1995).

19 / 30

Suppose we have selected an appropriate distribution function,
which is governed by some parameters θ. For instance, the gamma
distribution is governed by two parameters (θ = [c , s]T):

g(y |c , s) =
1

Z

(y
s

)c−1

exp
(
−y

s

)
, 0 ≤ y <∞, (15)

where c > 0, s > 0 and Z = Γ(c)s, with Γ denoting the gamma
function, an extension of the factorial function to a real or complex
variable.

The parameters are functions of the inputs x, i.e. θ = θ(x). The
conditional distribution p(y |x) is now replaced by p(y |θ(x)).

The functions θ(x) can be approximated by an NN (e.g. an MLP or
an RBF) model, i.e. inputs of the NN are x while the outputs are θ.

20 / 30

Using NN to model the parameters of a conditional probability
density distribution is called a conditional density network (CDN)
model.

To obtain an objective function, we turn to the principle of
maximum likelihood: If we have a probability distribution p(y|θ),
and we have observed values yd given by the dataset D, then the
parameters θ can be found by maximizing the likelihood function
p(D|θ), i.e. the parameters θ should be chosen so that the
likelihood of observing D is maximized.

p(D|θ) is a function of θ as D is known, and the output y can be
multivariate.

21 / 30

Since the observed data have n = 1, . . . ,N observations, and if we
assume independent observations so we can multiply their
probabilities together, the likelihood function is then

L = p(D|θ) =
N∏

n=1

p(y(n)|θ(n)) =
N∏

n=1

p(y(n)|θ(x(n))) , (16)

where the observed data y(n)
d are simply written as y(n), and θ(x(n))

are determined by the weights w of the NN model. Hence

L =
N∏

n=1

p(y(n)|w, x(n)). (17)

Mathematically, maximizing the likelihood function is equivalent to
minimizing the negative logarithm of the likelihood function, since
log is a monotonically increasing function.

22 / 30

Choose the objective function to be

J = − ln L = −
N∑

n=1

ln p(y(n)|w, x(n)), (18)

where we have converted the (natural) logarithm of a product of N
terms to a sum of N logarithmic terms.

Since x(n) and y(n) are known from the given data, the unknowns w
are optimized to get the minimum J .

Once the weights of the NN model are solved, then for any input x,
the NN model outputs θ(x), which gives the conditional distribution
p(y|x) via p(y|θ(x)).

23 / 30

E.g. where p(y |θ) is the gamma distribution (15), need to ensure
that the outputs of the NN model satisfy the restriction that both
parameters (c and s) of the gamma distribution are positive. Let

c = exp(z1), s = exp(z2), (19)

where z1 and z2 are the NN model outputs.

24 / 30

6.9.1 Mixture models
The disadvantage of specifying a parametric form for the conditional
distribution is that even adjusting the parameters may not lead to a
good fit to the observed data.

One way to produce an extremely flexible distribution function is to
use a mixture (i.e. a weighted sum) of simple distribution functions
to produce a mixture model:

p(y|x) =
K∑

k=1

ak(x)φk(y|x), (20)

where K is the number of components (also called kernels) in the
mixture, ak(x) is the (non-negative) mixing coefficient and φk(y|x)
the conditional distribution from the kth kernel.

25 / 30

There are many choices for the kernel distribution function φ, the
most popular choice being the Gaussian function

φk(y|x) =
1

(2π)M/2 σM
k (x)

exp

(
−‖y − µk(x)‖2

2σ2
k(x)

)
, (21)

where the Gaussian kernel function is centred at µk(x) with variance
σ2
k(x), and M is the dimension of the output vector y.

With large enough K , and with properly chosen µk(x) and σk(x),
p(y|x) of any form can be approximated to arbitrary accuracy by the
Gaussian mixture model.

An NN model approximates the parameters of the Gaussian mixture
model, i.e. µk(x), σk(x) and ak(x).

26 / 30

A total of M ×K parameters in µk(x), and K parameters in each of
σk(x) and ak(x), hence a total of (M + 2)K parameters.

Let z represents the (M + 2)K outputs of the NN model. Since
there are constraints on σk(x) and ak(x), they cannot simply be the
direct outputs from the NN model.

As σk(x) > 0, we need to represent them as

σk = exp
(
z
(σ)
k

)
, (22)

where z
(σ)
k are the NN model outputs related to the σ parameters.

From the normalization condition∫
p(y|x)dy = 1, (23)

27 / 30

we obtain, via (20) and (21), the constraints

K∑
k=1

ak(x) = 1, 0 ≤ ak(x) ≤ 1. (24)

To satisfy these constraints, ak(x) is related to the NN output z
(a)
k

by a softmax function, i.e.

ak =
exp
(
z
(a)
k

)
∑K

k ′=1 exp
(
z
(a)
k ′

) . (25)

Since there are no constraints on µk(x), they can simply be the NN
model outputs directly, i.e.

µjk = z
(µ)
jk . (26)

28 / 30

The objective function for the NN model is again obtained via the
likelihood as in (18), with

J = −
∑
n

ln

(
K∑

k=1

ak(x(n))φk(y(n)|x(n))

)
. (27)

Once the NN model weights w are solved from minimizing J , we get
the mixture model parameters µk(x), σk(x) and ak(x) from the NN
model outputs, and the conditional distribution p(y|x) via (20).

To get a specific y value given x, we calculate the mean of the
conditional distribution using (20) and (21), yielding

E[y|x] =

∫
y p(y|x)dy =

∑
k

ak(x)

∫
y φk(y|x)dy =

∑
k

ak(x)µk(x).

(28)

29 / 30

Also get the variance of the conditional distribution about the
conditional mean using (20), (21) and (28):

s2(x) = E [‖y − E[y|x] ‖2 | x]

=
∑
k

ak(x)

σk(x)2 +

∥∥∥∥∥µk(x)−
K∑

k=1

ak(x)µk(x)

∥∥∥∥∥
2
 .(29)

Hence the Gaussian mixture model not only gives the conditional
distribution p(y|x), but also conveniently provides, for a given x, a
specific estimate for y and a measure of its uncertainty via the
conditional mean (28) and variance (29).

References:

Wilks, D. S. (1995). Statistical Methods in the Atmospheric
Sciences. Academic Pr., San Diego.

30 / 30

