
Ch.6 Feed-forward neural network models [Book, Chap.4]

The human brain is a massive network of about 1011 interconnecting
neural cells called neurons, performing highly parallel computing.
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The brain is exceedingly robust and fault tolerant.

A neuron is a very simple processor – its “clockspeed” is of the
order of a millisecond, about a million times slower than that of a
computer – yet the human brain beats the computer on many tasks
involving vision, motor control, common sense, etc.

Hence, the power of the brain lies in its massive network structure.

What computational capability is offered by a massive network of
interconnected neurons has led to the development of the field of
neural networks (NN).

Scientists from many disciplines are interested in artificial neural
networks, i.e. how to borrow ideas from neural network structures to
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develop better techniques in computing, artificial intelligence, data
analysis, modelling and prediction.

The most widely used type of NN is the feed-forward neural
network, where the signal in the model only proceeds forward from
the inputs through any intermediate layers to the outputs without
any feedback.

6.1 McCulloch and Pitts model [Book, Sect. 4.1]
First NN model of significance is the McCulloch and Pitts (1943)
model.
A neuron receives stimulus (signals) from its neighbours, and if the
total stimulus exceeds some threshold, the neuron becomes
activated and fires off (outputs) a signal.
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Their model neuron is a binary threshold unit, i.e. it receives a
weighted sum of its inputs from other units, and outputs either 1 or
0 depending on whether the sum exceeds a threshold.

For a neuron, if xi denotes the input signal from the ith neighbour,
which is weighted by a weight parameter wi , the output of the
neuron y is given by

y = H(
∑
i

wixi + b) , (1)

where b is called an offset or bias parameter, and H is the
Heaviside step function,

H(z) =

{
1 if z ≥ 0
0 if z < 0 .

(2)
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By adjusting b, the threshold level for the firing of the neuron can
be changed.

McCulloch and Pitts proved that networks made up of such neurons
are capable of performing any computation a digital computer can,
though there is no provision that such an NN computer is
necessarily faster or easier.

In the McCulloch and Pitts model, the neurons are very similar to
conventional logical gates, and there is no algorithm for finding the
appropriate weight and offset parameters for a particular problem.

6.2 Perceptrons [Book, Sect. 4.2]

Next major advance is the perceptron model of Rosenblatt (1958,
1962) (and similar work by Widrow and Hoff (1960)). The
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perceptron model consists of an input layer of neurons connected to
an output layer of neurons:

Neurons are also referred to as nodes or units in the NN literature.

The key advance is the introduction of a learning algorithm, which
finds the weight and offset parameters of the network for a
particular problem.
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An output neuron

yj = f (
∑
i

wjixi + bj) , (3)

where xi denotes an input, f a specified transfer function known as
an activation function, wji the weight parameter connecting the ith
input neuron to the jth output neuron, and bj the offset or bias
parameter of the jth output neuron, and −bj is also called the
threshold parameter.

A more compact notation eliminates the distinction between weight
and offset parameters by expressing

∑
i wixi + b as∑

i wixi + w0 =
∑

i wixi + w01,
i.e. b can be regarded as simply the weight w0 of an extra constant
input x0 = 1, and (3) can be written as

yj = f (
∑
i

wjixi) , (4)
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with the summation starting from i = 0.

The step function was originally used as the activation function, but
other continuous functions can also be used.

Given data of the inputs and outputs, one can train the network so
that the model output values yj derived from the inputs using (3)
are as closed as possible to the data ydj (also called the target), by
finding the appropriate weight and offset parameters in (3).

With the parameters known, (3) gives the output variable yj as a
function of the input variables. Details of the training process will
be given later.
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In situations where the output are not binary variables, a commonly
used activation function is the logistic sigmoidal function, or simply
the logistic function, where ‘sigmoidal’ means an S-shaped function:

f (x) =
1

1 + e−x
. (5)

This function has an asymptotic value of 0 when x → −∞, and
rises smoothly as x increases, approaching the asymptotic value of 1
as x → +∞.

The logistic function is used because it is nonlinear & differentiable.

The role of the weight and offset parameters in f (
∑

i wixi + b) can
be readily seen in the univariate form f (wx + b), where a large w
gives a steeper transition from 0 to 1 (w →∞ approaches the
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Heaviside function), while increasing b slides the logistic curve to
the left along the x-axis.
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The advent of the perceptron model led to great excitement;
however, the serious limitations of the perceptron model was soon
recognized (Minsky and Papert, 1969).

Simple examples are provided by the use of perceptrons to model
the Boolean logical operators AND and XOR (the exclusive OR):

For z = x .AND.y , z is TRUE only when both x and y are TRUE.

For z = x .XOR.y , z is TRUE only when exactly one of x or y is
TRUE.

Let 0 denotes FALSE and 1 denotes TRUE, and the activation
function used is the step function .
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The simple perceptron model which represents z = x .AND.y , maps
from (x , y) to z in the following manner:

(0, 0) → 0

(0, 1) → 0

(1, 0) → 0

(1, 1) → 1 .

12 / 44



However, a perceptron model for z = x .XOR.y does not exist! One
cannot find a perceptron model which will map:

(0, 0) → 0

(0, 1) → 1

(1, 0) → 1

(1, 1) → 0 .

The difference between the two problems is shown in Fig.:
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Figure : The classification of the input data (x , y) by the Boolean logical
operator (a) AND, and (b) XOR (exclusive OR). In (a), the decision
boundary separating the TRUE domain (black circle) from the FALSE
domain (white circles) can be represented by a straight (dashed) line,
hence the problem is linearly separable; whereas in (b), two lines are
needed, rendering the problem not linearly separable.

It is easy to see why the perceptron model is limited to a linearly
separable problem. If the activation function f (z) has a decision
boundary at z = c , (3) implies that the decision boundary for the
jth output neuron is given by

∑
i wjixi + bj = c , which is the

equation of a straight line in the input x-space.
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For an input x-space with dimension n = 2, there are 16 possible
Boolean functions (among them AND and XOR), and 14 of the 16
are linearly separable.
When n = 3, 104 out of 256 Boolean functions are linearly
separable.
When n = 4, the fraction of Boolean functions which are linearly
separable drops further— only 1882 out of 65536 are linearly
separable (Rojas, 1996).
As n gets large, the set of linearly separable functions forms a very
tiny subset of the total set (Bishop, 1995).

Interests in NN research waned following the realization that the
perceptron model is restricted to linearly separable problems.

6.3 Multi-layer perceptrons (MLP) [Book, Sect. 4.3]
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When the limitations of the perceptron model was realized, it was
felt that the NN might have greater power if additional ‘hidden’
layers of neurons were placed between the input layer and the
output layer— but there was then no algorithm which would solve
for the parameters of the multi-layer perceptrons (MLP) .

Interests in NN revived in the mid 1980s when a way was found to
solve for the MLP parameters.
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The input signals xi are mapped to the hidden layer of neurons hj by

hj = f (
∑
i

wjixi + bj) , (6)

and then onto the output yk ,

yk = g(
∑
j

w̃kjhj + b̃k) , (7)

where f and g are activation functions, wji and w̃kj weight
parameter matrices, and bj and b̃k are offset parameters.

To train the NN to learn from a dataset (the target), we minimize
the objective function J (also referred to as the cost function, error
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function, or loss function), defined here to be one half the mean
squared error (MSE) between the model output and the target,

J =
1

N

N∑
n=1

{
1

2

∑
k

[
y
(n)
k − y

(n)
dk

]2}
(8)

where ydk is the target data, and there are N observations.

An optimization algorithm is needed to find the weight and offset
parameter values which minimize the objective function, hence the
MSE between the model output and the target.

The MSE is the most common form used for the objective function
in nonlinear regression problems, [as minimizing the MSE is
equivalent to maximizing the likelihood function assuming Gaussian
error distribution].
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Details on how to perform the nonlinear optimization will be
presented later, as there are many choices of optimization schemes.

In general, nonlinear optimization is difficult, and convergence can
be drastically slowed or numerically inaccurate if the input variables
are poorly scaled. Hence it is important to standardize the input
data before applying the NN model.

Besides the logistic function, another commonly used sigmoidal
activation function is the hyperbolic tangent function

f (x) = tanh x =
ex − e−x

ex + e−x
. (9)
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This function has an asymptotic value of −1 when x → −∞, and
rises smoothly as x increases, approaching the asymptotic value of 1
as x → +∞.

The tanh function can be viewed as a scaled version of the logistic
function (Eq. 5):

Q1: Show that

tanh(x) = 2 logistic(2x)− 1 . (10)

—–
While the range of the logistic function is (0, 1), the range of the
tanh function is (−1, 1). Hence the output of a tanh function does
not have the positive systematic bias found in the output of a
logistic function, which if input to the next layer of neurons, is
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somewhat difficult for the network to handle, resulting in slower
convergence during NN training.

Hence the tanh activation function is to be preferred over the
logistic activation function in the hidden layer(s).

Since the range of the tanh function is (−1, 1), the range of the
network output will be similarly bounded if tanh is used for g in (7).

This is useful if the NN tries to classify the output into one of two
classes, but may cause a problem if the output variables are
unbounded.

Even if the output range is bounded within [−1, 1], values such as
−1 and 1 can only be represented by the tanh function at its
asymptotic limit.
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One possible solution is to scale the output variables, so they all lie
within the range (−0.9, 0.9)— the range (−0.9, 0.9) is preferred to
(−1, 1) as it avoids using the asymptotic range of the tanh function,
resulting in faster convergence during NN training.

When the output is not restricted to a bounded interval, the identity
activation function is commonly used for g , i.e. the output is simply
a linear combination of the hidden neurons in the layer before,

yk =
∑
j

w̃kjhj + b̃k . (11)

For the 1-hidden layer NN, this means the output is just a linear
combination of sigmoidal shaped functions.

Some confusion on how to count the number of layers:
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The most common convention is to count the number of layers of
mapping functions, which is equivalent to the number of layers of
neurons excluding the input layer. The 1-hidden-layer NN will be
referred to as a 2-layer NN.

[Some researchers count the total number of layers of neurons, and
refer to the 1 hidden layer NN as a 3-layer NN].

Useful shorthand notation for describing the number of inputs,
hidden and output neurons: a 3-4-2 network denotes a 1-hidden
layer NN with 3 input, 4 hidden and 2 output neurons.

The total number of (weight and offset) parameters in an m1-m2-m3

network is Np = (m1 + 1)m2 + (m2 + 1)m3, of which
m1m2 + m2m3 = m2(m1 + m3) are weight parameters, and m2 + m3

are offset parameters.
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In multiple linear regression problems with m predictors and 1
response variable, i.e. y = a0 + a1x1 + . . . + amxm, there are m + 1
parameters.

For corresponding nonlinear regression with an m-m2-1 MLP
network, there will be Np = (m + 1)m2 + (m2 + 1) parameters,
usually greatly exceeding the number of parameters in the multiple
linear regression model.
Unlike the parameters in a multiple linear regression model, the
parameters of an NN model are in general extremely difficult to
interpret.
In a 1-hidden layer MLP, if the activation functions at both the
hidden and output layers are linear, then it is easily shown that the
outputs are simply linear combinations of the inputs.
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The hidden layer is therefore redundant and can be deleted
altogether. The MLP model simply reduces to multiple linear
regression.

Hence, the presence of a nonlinear activation function at the hidden
layer is essential for the MLP model to have nonlinear modelling
capability.

While there can be exceptions, MLP are usually employed with
Np < N , N being the number of observations in the dataset.

Ideally, one would like to have Np � N , but in many environmental
problems, this is unattainable.
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Q2: Given 50 observations in time, you want to use a 1-hidden layer
MLP to model y as a function of x, where x contains 6 predictors.
How many hidden neurons can you use without violating Np < N?
—–

In most climate problems, decent climate data have been available
only after World War II.

Another problem is the number of predictors can be very large,
although there can be strong correlations among predictors. PCA is
commonly applied to the predictor variables, and the leading PCs
served as inputs to the MLP network, to greatly reduce the number
of input neurons and therefore Np.
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If there are multiple outputs, one has two choices: Build a single NN
with multiple outputs, or build multiple NN models each with a
single output.

If the output variables are correlated among themselves, then the
single NN approach often leads to higher skills, since training
separate networks for individual outputs does not take into account
the relations between the output variables.

If the output variables are uncorrelated (e.g. the outputs are
principal components), then training separate networks often leads
to slightly higher skills, as this approach focuses the single-output
NN (with fewer parameters than the multiple-output NN) on one
output variable without the distraction from the other uncorrelated
output variables.
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To model a nonlinear relation y = f (x), why not use Taylor series

y = a0+
m∑

i1=1

ai1xi1 +
m∑

i1=1

m∑
i2=1

ai1i2xi1xi2 +
m∑

i1=1

m∑
i2=1

m∑
i3=1

ai1i2i3xi1xi2xi3 +· · · .

(12)
In practice, only terms up to order k are kept, i.e. y is approximated
by a kth order polynomial, and there are m input variables. The
number of adjustable regression coefficients (a’s) is O(mk), i.e. of
the order of mk (Bishop, 1995).

In practice, mk means the number of model parameters rise at an
unacceptable rate as m increases.
In MLP, the number of parameters typically grows at O(m).
However, nonlinear optimization is needed to find the parameters.

Polynomials can do crazy extrapolations.
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6.4 Back-propagation [Book, Sect. 4.4]

How to find the optimal weight and offset parameters which would
minimize the objective function J?

To minimize J , one needs to know the gradient of J with respect to
the parameters. The back-propagation algorithm gives the gradient
of J through the backward propagation of the model errors.

The MLP problem could not be solved until the introduction of the
back-propagation algorithm by Rumelhart et al. (1986), though the
algorithm had actually been discovered in the Ph.D. thesis of
Werbos (1974).
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In general, the weights (i.e. parameters) are randomly initialized at
the start of the optimization process. The inputs are mapped
forward by the network, and the output model errors are obtained.

The back-propagation algorithm is composed of two parts: The first
part computes the gradient of J by the backward propagation of the
model errors.
The second part descents along the gradient towards the minimum
of J .
This descent method is called gradient descent or steepest descent,
and is very inefficient.

This process of mapping the inputs forward and then
backpropagating the error is iterated until J satisfies some
convergence criterion.
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Nowadays, the term ‘back-propagation’ is used somewhat
ambiguously— it could mean the original back-propagation
algorithm, or it could mean using only the first part involving the
backward error propagation to compute the gradient of J , to be
followed by a much more efficient descent algorithm, such as the
conjugate gradient algorithm, resulting in much faster convergence.

The objective function convergence criterion is a subtle issue. Many
MLP applications do not train until convergence to the global
minimum. The reason is that data contain both signal and noise.
Given enough hidden neurons, an MLP can have enough parameters
to fit the training data to arbitrary accuracy, which means it is also
fitting to the noise in the data, an undesirable condition known as
overfitting. When one obtains an overfitted solution, it will not fit
new data well.
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Figure : The dashed curve illustrates a good fit to noisy data (indicated
by the squares), while the solid curve illustrates overfitting — where the
fit is perfect on the training data (squares), but is poor on the validation
data (circles). Often the NN model begins by fitting the training data as
the dashed curve, but with further iterations, ends up overfitting as the
solid curve.
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One is interested not in using NNs to fit a given dataset to arbitrary
accuracy, but in using NN to learn the underlying relationship in the
given data, i.e. be able to generalize from a given dataset, so that
the extracted relationship even fits new data not used in training the
NN model.

To prevent overfitting, the dataset is often divided into two parts,
one for training, the other for validation.
As the number of training iterations (i.e. epochs) increases, the
objective function evaluated over the training data decreases.
However, the objective function evaluated over the validation data
will drop but eventually increase as training epochs increase,
indicating that the training dataset is already overfitted.
The minimum in the objective function evaluated over the validation
data indicates when training should be stopped to avoid overfitting
(as marked by the vertical dotted line).
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This very common approach is called the early stopping (a.k.a.
stopped training) method.

Similarly, J evaluated over the training data generally drops as the
number of hidden neurons increases. Again, the objective function
evaluated over a validation set will drop initially but eventually
increase due to overfitting from excessive number of hidden neurons.
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Hence the minimum of the objective function over the validation
data may indicate how many hidden neurons to use.

A further complication is the common presence of multiple local
minima in the objective function.
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Objective function

Figure : A schematic diagram illustrating the objective function surface,
where depending on the starting condition, the search algorithm often
gets trapped in one of the numerous deep local minima. The local
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minima labelled 2, 4 and 5 are likely to be reasonable local minima, while
the minimum labelled 1 is likely to be a bad one (in that the data was
not well fitted at all). The minimum labelled 3 is the global minimum,
which could correspond to an overfitted solution (i.e. fitted closely to the
noise in the data), and may in fact be a poorer solution than the minima
labelled 2, 4 and 5.

6.5 Hidden neurons [Book, Sect. 4.5]

So far, we have only described an NN with 1 hidden layer. How
many layers of hidden neurons does one need? And how many
neurons in each hidden layer?

Studies (Cybenko, 1989; Hornik et al., 1989; Hornik, 1991) have
shown that given enough hidden neurons in an MLP with 1 hidden

37 / 44



layer, the network can approximate arbitrarily well any continuous
function y = f (x).

Thus even with 1 hidden layer, the MLP has become a successful
universal function approximator. There is however no guidance as to
how many hidden neurons are needed.

In real world applications, one may encounter some very complicated
nonlinear relations where a very large number of hidden neurons are
needed if a single hidden layer is used, whereas if two hidden layers
are used, more modest number of hidden neurons suffices, with
greater accuracy.

Hidden neurons are intermediate variables needed to carry out the
computation from the inputs to the outputs, and are generally not
easy to interpret.
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If the number of hidden neurons are few, then they might be viewed
as a low-dimensional phase space describing the state of the system.

E.g., Hsieh and Tang (1998) considered a simple MLP network for
forecasting the tropical Pacific wind stress field.

The input consists of the first 11 PCs from a singular spectrum
analysis of the wind stress field, plus a sine and cosine function of
annual period to indicate the phase of the annual cycle, as the El
Niño-Southern Oscillation (ENSO) fluctuations are often phase
locked to the annual cycle.

The single hidden layer has 3 neurons, and the output layer the
same 11 PC time series one month later.
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Figure : The values of the 3 hidden neurons plotted in 3-D space for the
years 1972, 1973, 1976, 1982, 1983 and 1988. Projections onto 2-D
planes are also shown. The small circles are for the months from January

40 / 44



to December, and the two ”+” signs for January and February of the
following year. El Niño warm episodes occurred during 1972, 1976 and
1982, while a cool episode occurred in 1988. In 1973 and 1983, the
tropics returned to cooler conditions from an El Niño. Notice the
similarity between the trajectories during 1972, 1976 and 1982, and
during 1973, 1983 and 1988. In years with neither warm nor cold
episodes, the trajectories oscillate randomly near the centre of the cube.
From these trajectories, one can identify the precursor phase regions for
warm episodes and cold episodes; and when the system enters one of
these precursor phase regions, a forecast for either a warm or a cool
episode can be issued.
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We can interpret the NN as a projection from the input space onto
a 3-D phase space, as spanned by the neurons in the hidden layer.
The state of the system in the phase space then allows a projection
onto the output space.

For most NN applications, it is not worth spending time to find
interpretations for the hidden neurons, especially when there are
many hidden neurons in the network.
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