
Ch.5 Classification and Clustering

5.6 Self-organizing maps (SOM) [Book, Sect. 10.3]

The self-organizing map (SOM) method, introduced by Kohonen
(1982, 2001), approximates a dataset in multidimensional space by a
flexible grid (typically of 1 or 2 dimensions) of cluster centres.

Many structures in the cortex of the brain are 2-D or 1-D. In
contrast, even the perception of colour involves three types of light
receptors. Besides colour, human vision also processes information
about the shape, size, texture, position and movement of an object.
So the question naturally arises on how 2-D networks of neurons can
process higher dimensional signals in the brain.
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For a 2-dimensional rectangular grid, the grid points or units
ij = (l ,m), where l and m take on integer values, i.e. l = 1, . . . , L,
m = 1, . . . ,M , and j = 1, . . . , LM . (If a 1-dimensional grid is
desired, simply set M = 1.)

To initialize the training process, PCA is usually performed on the
dataset, and the grid ij is mapped to zj(0) (in the data space) lying
on the plane spanned by the 2 leading PCA eigenvectors. As
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training proceeded, the initial flat 2D surface of zj(0) is bended to
fit the data.

The original SOM was trained in a flow-through manner (i.e.
observations are presented one at a time during training), though
algorithms for batch training is now also available. In flow-through
training, there are two steps to be iterated, starting with n = 1:

Step (i): At the nth iteration, select an observation x(n) from the
data space, and find among the points zj(n − 1), the one with the
closest (Euclidean) distance to x(n). Call this closest neighbour
zk(n), with the corresponding unit ik(n) called the best matching
unit (BMU).
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Step (ii): Let

zj(n) = zj(n − 1) + η h(‖ij − ik(n)‖2) [x(n)− zj(n − 1)], (1)

where η is the learning rate parameter and h is a neighbourhood or
kernel function.

The neighbourhood function gives more weight to the grid points ij
near ik(n), than those far away, an example being a Gaussian
drop-off with distance.

Note that the distances between neighbours are computed for the
fixed grid points (ij = (l ,m)), not for their corresponding positions
zj(n) in the data space.
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Typically, as n increases, the learning rate η is decreased gradually
from the initial value of 1 towards 0, while the width of the
neighbourhood function is also gradually narrowed.

While SOM has been commonly used as a clustering tool, it should
be pointed that it may underperform simpler techniques such as
K -means clustering. Hence the value of SOM lies in its role as
discrete nonlinear PCA (Cherkassky and Mulier, 1998), than as a
clustering algorithm.

As an example, consider the famous Lorenz ‘butterfly’-shaped
attractor from chaos theory (Lorenz, 1963). Describing idealized
atmos. convection, the Lorenz system is governed by 3
(nondimensionalized) differential equations:

ẋ = −ax + ay , ẏ = −xz + bx − y , ż = xy − cz , (2)
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where the overhead dot denotes time derivative. A chaotic system is
generated by choosing the parameters a = 10, b = 28, and c = 8/3.
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Figure : 2-D SOM with a 5× 5 hexagonal mesh fitted to the Lorenz data.
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Figure : 1-D SOM with 6 units fitted to the Lorenz data.

How many grid points or units should one use in the SOM?
Underfitting with too few units and overfitting with too many units.
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Two quantitative measures of mapping quality are commonly used:
average quantization error (QE) and topographic error (TE)
(Kohonen, 2001).

QE is the average distance between each data point x and zk of its
BMU.

TE gives the fraction of data points for which the first BMU and the
second BMU are not neighbouring units. Smaller QE and TE values
indicate better mapping quality.

By increasing the number of units, QE can be further decreased;
however, TE will eventually rise, indicating that one is using an
excessive number of units.

Functions in Matlab

8 / 10



SOM:
http://www.mathworks.com/help/nnet/gs/

cluster-data-with-a-self-organizing-map.html

http://www.mathworks.com/help/toolbox/nnet/ref/

selforgmap.html

net = selforgmap([7 6]); (uses a 7× 6 grid)
net = train(net,x);
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