
Ch.5 Classification and Clustering

Classification [Book, scattered]
With discrete response variables, do classification instead of
regression.
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Figure : (a) Linear and (b) nonlinear decision boundaries separating 2
classes in the feature space (i.e. predictor space).
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Classes are separated by decision boundaries , which can be linear or
nonlinear. Linear classifiers only give linear decision boundaries, but
nonlinear classifiers can give nonlinear decision boundaries.

In a parametric model, the model structure is specified by a number
of model parameters (e.g. in linear regression, the regression
coefficients are the parameters).

In a non-parametric model , the number of parameters is flexible
and not fixed in advance, and may grow with the amount of training
data.
We start with a simple non-parametric classifier: k-nearest
neighbours.

5.1 k-nearest neighbour (kNN) classifier
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Given training data {x, y} to build the model. The discrete response
variable y can belong to class Ci , i = 1, 2, . . . , c . Given a new
feature vector x′, predict the response y ′.

Choose k , the number of nearest neighbours.
Find the k nearest neighbours in the training data {x}, closest to x′.
For these k nearest neighbours, look at their corresponding y values.

If class Ci occurs more frequently than the other classes in the k
y-values, then let y ′ = Ci .
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FIGURE 4.15. The k-nearest-neighbor query starts at the test point x and grows a spher-
ical region until it encloses k training samples, and it labels the test point by a majority
vote of these samples. In this k = 5 case, the test point x would be labeled the category
of the black points. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

Figure : From test point x′, grow spherical region until k nearest
neighbours are enclosed. The class y ′ at x′ is determined by the majority
vote of the k nearest neighbours. (Duda et al., 2001, Fig.4.15)
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One can even get a posterior probability for y ′. If among the k
y-values, n1 of them belong to class C1, n2 to C2, etc., then the
probability of y ′ being in class C1 is n1/k , ..., in class Ci is ni/k , etc.
Classification then boils down to voting, i.e. choose the class Ci with
the most “votes” from the k nearest neighbours.

Q1: A k nearest neighbour model is used to predict summer
temperature (warm, normal or cool) from the spring climate
conditions x. With k = 10, for a test point x′, the 10 nearest
neighbours from the training data have 3 warm, 3 normal and 4 cool
summers. What is the posterior probability of the coming summer
being (a) warm, (b) normal and (c) cool?
—–
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Choice of k : If k is small, classification is sensitive to noise in the
training data. Bigger k => less sensitivity to noise. But if k is too
large => some of the neighbours are far from x′.

How to choose the optimal k value?
Use only part (e.g. 80%) of the available data for model training,
keep the remainder as validation data.
Build a series of models: e.g. model 1 with k = 1, model 2 with
k = 2, ..., model K with k = K .
Test the model performance using the independent validation data.
The model with the fewest classification errors gives the optimal
choice for k .

Pros and cons of the kNN classifier:
Pros: Nonlinear classifier. Simple in concept.
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Cons: (a) Need all training data to specify the model => needs lots
of memory and computationally slow for datasets with many
samples. (b) When the dimension of x is not small, the k nearest
neighbours can be far away.
Overall, not a good method.

5.2 Conditional probabilities and Bayes’ theorem [Book,
Sec.1.5; Bishop (2006, Sect.1.2)]

Let X and Y be discrete variables. E.g. X = ‘warm’, ‘normal’ or
‘cold’; Y = ‘drought’ or ‘no drought’. P(X ,Y ) is the joint
probability. E.g. P(cold, drought) = probability of having both cold
and drought conditions.

Two rules of probability:
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P(X ) =
∑
Y

P(X ,Y ), (sum rule) (1)

P(X ,Y ) = P(Y |X )P(X ) = P(X |Y )P(Y ), (product rule) (2)

where P(X ) is the marginal probability, and P(Y |X ) is the
conditional probability, i.e. the probability of Y given X . E.g.
P(drought|warm) = probability of drought given it is warm.
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16 1. INTRODUCTION
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Figure 1.11 An illustration of a distribution over two variables, X, which takes 9 possible values, and Y , which
takes two possible values. The top left figure shows a sample of 60 points drawn from a joint probability distri-
bution over these variables. The remaining figures show histogram estimates of the marginal distributions p(X)
and p(Y ), as well as the conditional distribution p(X|Y = 1) corresponding to the bottom row in the top left
figure. [From Bishop, 2006]

Again, note that these probabilities are normalized so that

p(F = a|B = r) + p(F = o|B = r) = 1 (1.20)

and similarly
p(F = a|B = b) + p(F = o|B = b) = 1. (1.21)

We can now use the sum and product rules of probability to evaluate the overall
probability of choosing an apple

p(F = a) = p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)

=
1

4
× 4

10
+

3

4
× 6

10
=

11

20
(1.22)

from which it follows, using the sum rule, that p(F = o) = 1− 11/20 = 9/20.
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E.g. A meteorologist categories X , the air pressure in the morning,
as L (low) or NL (non-L). He also categories Y , the occurrence of
tornadoes in the afternoon as T (tornadoes) or NT (non-T).
From 100 days of observations, he found 20 days of L and T, 5 days
of NL and T, 10 days of L and NT, and 65 days of NL and NT.
Find P(X ,Y ), P(X ) and P(Y ).

 P(X, Y)  
Y: X:     L NL P(Y) 
T 20/100 5/100 25/100 

NT 10/100 65/100 75/100 
P(X) 30/100 70/100  
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Q2: Compute the 2×2 table of P(Y |X ) for the tornado problem.
—–

From (2)/P(X ), we get Bayes’ theorem:

P(Y |X ) =
P(X |Y )P(Y )

P(X )
. (3)

Substituting (2) into (1) gives

P(X ) =
∑
Y

P(X |Y )P(Y ), (4)

so Bayes’ theorem can be written as

P(Y |X ) =
P(X |Y )P(Y )∑
Y P(X |Y )P(Y )

. (5)
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∑
Y Eq.(5) gives ∑

Y

P(Y |X ) = 1. (6)

Bayes’ theorem, (Reverend Thomas Bayes, 1702–1761), plays a
central role in modern statistics (Jaynes, 2003).
Bayesians describe probabilities in terms of beliefs and degrees of
uncertainty, similar to how the general public uses probability.

E.g., a fan prior to the start of a sports tournament asserts team A
has a probability of 60% for winning the tournament. After a loss,
the fan modifies the winning probability to 30%.
Bayes’ theorem provides formula for modifying prior probability
P(Y ) in view of new data X .
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Q3: Suppose a test for a toxin in a lake gives the following results:
If a lake has the toxin, the test returns a positive result 99% of the
time. If a lake does not have the toxin, the test still returns a
positive result 2% of the time. Suppose only 5% of the lakes
contain the toxin. What is the probability that a positive test result
for a lake turns out to be a false positive?
—–

More generally, e.g. a meteorologist wants to classify the
approaching weather state as class Ci , (i = 1, . . . , k), e.g. sunny,
cloudy, rainy, snowy, etc.
Assume some a priori probability (or simply prior probability) P(Ci).

He gets meteorological observations x (continuous variables) at 6
a.m. The meteorologist would like to obtain an a posteriori
probability (or simply posterior probability) P(Ci |x), i.e. the
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conditional probability of having weather class Ci on that day given
the 6 a.m. x data.

The joint probability density p(Ci , x) is the probability density that
an event belongs to class Ci and has value x.
Notation: p denotes a probability density; P for probability.

The joint probability density can be written as

p(Ci , x) = P(Ci |x)p(x), (7)

with p(x) the probability density of x. Alternatively,

p(Ci , x) = p(x|Ci)P(Ci), (8)
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with p(x|Ci), the conditional probability density of x, given that the
event belongs to class Ci . Equating the right hand sides of these 2
eqns. gives Bayes’ theorem:

P(Ci |x) =
p(x|Ci)P(Ci)

p(x)
. (9)

Eq.(4) generalizes to

p(x) =
∑
i

p(x|Ci)P(Ci). (10)

Eq.(9) becomes

P(Ci |x) =
p(x|Ci)P(Ci)∑
i p(x|Ci)P(Ci)

, (11)
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where the denominator is a normalization factor for the posterior
probabilities to sum to unity.

Bayes’ theorem says that the posterior probability P(Ci |x) is simply
p(x|Ci) (the likelihood of x given the event is of class Ci) multiplied
by the prior probability P(Ci), and divided by a normalization factor.

If we have a continuous variable w (instead of discrete variable Ci),
then Bayes’ theorem (9) becomes:

p(w |x) =
p(x|w)p(w)

p(x)
. (12)

5.3 Logistic regression [Bishop (2006, pp.197-198, 204-206, 209,
186-187), Book, pp.89-90, 174-176]
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The classical approach to classification is by discriminant analysis,
where the feature space (i.e. x space) is divided by decision
boundaries into decision regions R1, . . . ,Rk — if a feature vector
lands within Ri , the classifier will assign the class Ci . Ri may be
composed of several disjoint regions, all of which are assigned the
class Ci .

In linear discriminant analysis (LDA), decision boundaries are linear.
LDA can be solved by various methods, e.g. least squares, Fisher’s
linear discriminant, etc. (Bishop, 2006, Sect.4.1).

LDA has been surpassed by newer methods like logistic regression (a
linear classifier despite “regression” in the name).
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Logistic regression arises naturally from Bayes’ theorem. Start with
two classes C1 and C2. Recall Bayes’ theorem (11):

P(C1|x) =
p(x|C1)P(C1)

p(x|C1)P(C1) + p(x|C2)P(C2)
(13)

=
1

1 + p(x|C2)P(C2)
p(x|C1)P(C1)

(14)

=
1

1 + e−u
, (15)

with

−u = ln

[
p(x|C2)P(C2)

p(x|C1)P(C1)

]
. (16)

The logistic sigmoidal function σ(u)

σ(u) =
1

1 + e−u
. (17)
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If we further assume that the two classes p(x|Ci) both have
Gaussian distributions, one can show that

P(C1|x) = σ(wTx + b). (18)

The constant parameter b can be dropped if we add 1 as the first
element of x and add w0(= b) as the first element of w, hence

P(C1|x) = σ(wTx). (19)

P(C2|x) = 1− P(C1|x) = 1− σ(wTx). (20)

These 2 eqns. give the logistic regression model, but need to solve
for the weights w. Use maximum likelihood to find the optimal
weights.
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E.g. the dataset has 3 observations for x, namely {x1, x2, x3} and
for the class Ci , which happens to be {C2,C2,C1}. The likelihood
function is

P({C2,C2,C1}|w) = P(C2|x1)P(C2|x2)P(C1|x3). (21)

Find w which maximizes this likelihood function.

Multiclass (or multinomial) logistic regression is used when more
than 2 classes, i.e. Ci (i = 1, . . . , k), with

P(Ci |x) =
exp(wT

i x)∑k
j=1 exp(wT

j x)
. (22)
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Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression. [from Bishop (2006)]
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Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red
(×), green (+), and blue (◦). Lines denote the decision boundaries, and the background colours denote the
respective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see
that the region of input space assigned to the green class is too small and so most of the points from this class
are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing
correct classification of the training data. [From Bishop (2006)]
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Matlab codes for classification:

k-nearest neighbour classifier:
http://www.mathworks.com/help/stats/

classificationknnclass.html

(Multinomial) logistic regression:
http://www.mathworks.com/help/stats/mnrfit.html
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