Chapter 5 lecture questions

Q1: A k nearest neighbour model is used to predict summer temperature (warm, normal or cool) from the spring climate conditions **x**. With k = 10, for a test point **x'**, the 10 nearest neighbours from the training data have 3 warm, 3 normal and 4 cool summers. What is the posterior probability of the coming summer being (a) warm, (b) normal and (c) cool?

Answer: (a) 3/10, (b) 3/10, (c) 4/10.

Solution:

The probability of y' being in class C_1 is n_1/k , ..., in class C_i is n_i/k , so the probability of being warm is 3/10, normal is 3/10 and cool is 4/10. Classification involves choosing the class with the highest probability, so predict "cool" for the summer.

Q2: Compute the 2×2 table of P(Y|X) for the tornado problem.

Solution:

Given the table for P(X, Y) and P(X):

	P(X, Y)		
Y :	<i>X</i> : L	NL	P(Y)
Т	20/100	5/100	25/100
NT	10/100	65/100	75/100
P(X)	30/100	70/100	

From

$$P(X,Y) = P(Y|X)P(X),$$
(1)

we get

$$P(Y|X) = P(X,Y)/P(X).$$
(2)

Use this formula and the elements from the table for P(X, Y) and P(X) to get:

	P(Y X)		
Y:	<i>X</i> : L	NL	
Т	20/30	5/70	
NT	10/30	65/70	
Sum	30/30	70/70	

Q3: Suppose a test for a toxin in a lake gives the following results: If a lake has the toxin, the test returns a positive result 99% of the time. If a lake does not have the toxin, the test still returns a positive result 2% of the time. Suppose only 5% of the lakes contain the toxin. What is the probability that a positive test result for a lake turns out to be a false positive?

Answer: 27.7%.

Solution:

The two classes for Y are C_1 and C_0 , being toxic and non-toxic, respectively. The measurements X are either 1 (test result positive) or 0 (result negative). We are given that $P(C_i)$ has the values $P(C_1) = 0.05$ and $P(C_0) = 1 - 0.05 = 0.95$. For $P(X|C_i)$, we are given $P(1|C_1) = 0.99$, and $P(1|C_0) = 0.02$. We want to find $P(C_0|X = 1)$, the probability there is no toxin yet the test came out positive. From Bayes' theorem, we have

$$P(C_0|1) = \frac{P(1|C_0)P(C_0)}{P(1|C_0)P(C_0) + P(1|C_1)P(C_1)}$$
$$= \frac{0.02 \times 0.95}{0.02 \times 0.95 + 0.99 \times 0.05} = 0.277.$$

Hence the probability for a false positive is a surprisingly high 27.7%.

Q4: Hierarchical clustering analysis (using Ward's method) was applied to a dataset containing the concentration of 11 ions in the honey from 44 locations in Europe (Fermo et al., 2013). How many clusters for the locations appear optimal?

Solution:

In the dendrogram figure, after 2 clusters (top red line), the distances between clusters become smaller and similar in size for 3-6 clusters. After 6 clusters (bottom red line), the distances become even smaller for 7 clusters or more. Seems reasonable to pick either 2 clusters or 6 clusters as optimal.

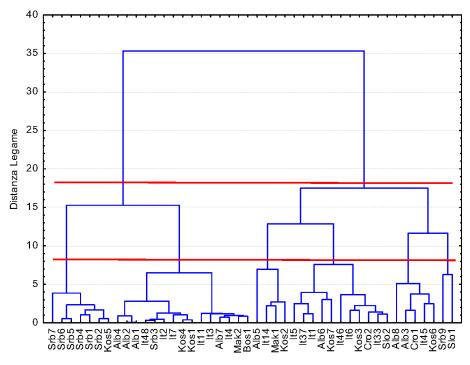


Fig. 4. Dendrogram obtained from PCA (Ward's method) of honey samples from Italy and from W. Balkans.

References

Fermo, P., Beretta, G., Facino, R. M., Gelmini, F., and Piazzalunga, A. (2013). Ionic profile of honey as a potential indicator of botanical origin and global environmental pollution. *Environmental Pollution*, 178:173–81.