
Time series analysis [Book, Ch.3]

4.2 Windows [Book, Sect. 3.2]

When applying Fourier transform to a finite record of duration T ,
periodicity is assumed for y , which presents a problem.

Unless y(0) and y(T ) are of the same value, the periodicity
assumption creates a step discontinuity at y(T ) (Fig. 1).
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The Fourier representation of a step discontinuity requires the use of
many spectral components, i.e. spurious energy is leaked to many
frequency bands.

Another view is to consider the true time series Y (t) as extending
from −∞ to +∞. It is multiplied by a rectangular window function

w(t) =

{
1 for − T/2 ≤ t ≤ T/2
0 elsewhere

(1)

to yield the finite data record y(t) of duration T (for convenience, y
is now defined for −T/2 ≤ t ≤ T/2).

Thus the data record can be regarded as the product between the
true time series and the window function, i.e. y = wY .
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If ŵ and Ŷ are the Fourier transforms of w(t) and Y (t) over
(−∞,∞), then the Fourier transform of the product wY is the
convolution of ŵ and Ŷ .

For the rectangular window, ŵ has many significant side-lobes.
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The convolution of ŵ and Ŷ leads to spurious energy leakage into
other frequency bands (Jenkins and Watts, 1968, p.49).

If the ends of the window are tapered (e.g. by a cosine-shaped
taper) to avoid the abrupt ends, the size of the side-lobes can be
greatly reduced, thereby reducing the spurious energy leakage.

In effect, a tapered window tapers the ends of the data record, so
that the two ends continuously approach y(−T/2) = y(T/2) = 0,
avoiding the original step discontinuity.
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Many possible windows (see e.g. Emery and Thomson, 1997).

4.3 Filters [Book, Sect. 3.3]

One often would like to perform digital filtering on the raw data.
For instance, one may want a smoother data field, or want to
concentrate on the low-frequency or high-frequency signals in the
time series.
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Express a time series x(t) in terms of its complex Fourier
components X (ω):

x(t) =
∑
ω

X (ω) e iωt , (2)

where it is understood that ω and t denote the discrete variables ωm

and tn. A filtered time series is given by

x̃(t) =
∑
ω

f (ω)X (ω) e iωt , (3)

where f (ω) is the filter “response” function.
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Figure : Ideal filters: (a) low-pass, (b) high-pass, and (c) band-pass,
where f (ω) is the filter “response function”, and ωN is the Nyquist
frequency.

In ideal filters, the step discontinuity at the cut-off frequency ωc

produces “ringing” (i.e. oscillations) in the filtered time series
(especially at the two ends) (Emery and Thomson, 1997, Fig.
5.10.19).
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This problem of a step discontinuity in the frequency domain leading
to ringing in the time domain mirrors the one mentioned in the
previous section, where a time series truncated by a rectangular
window lead to energy leakage in the frequency domain.

In practice, f (ω) needs to be tapered at ωc to suppress ringing in
the filtered time series.

To perform filtering in the frequency domain, the steps are:
(i) Fourier transform x(t) to X (ω),
(ii) multiply X (ω) by f (ω),
(iii) inverse transform f (ω)X (ω) to get x̃(t), the filtered time series.

Alternatively, filtering can be performed in the time domain as well.
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Before the invention of fast Fourier transform algorithms, filtering in
the frequency domain was prohibitively expensive.
Nowadays, filtering can be performed in either the frequency or the
time domain.

A commonly used time domain filter is the 3-point moving average
(or running mean) filter

x̃n =
1

3
xn−1 +

1

3
xn +

1

3
xn+1 , (4)

i.e. average over the immediate neighbours.

More generally, a filtered time series is given by

x̃n =
L∑

l=−L

wl xn+l , (5)
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where wl are the weights of the filter.

Suppose the filtered time series has the Fourier decomposition

x̃n =
∑
ω

X̃ (ω) e iωtn . (6)

Comparing with (3), one sees that

X̃ (ω) = f (ω)X (ω) . (7)

Thus

f (ω) = X̃ (ω)/X (ω) =

∑
l wl e

iωl∆tX (ω)

X (ω)
, (8)

where we have used the fact the Fourier transform is linear, so X̃ (ω)
is simply a linear combination of wl times the Fourier transform of
xn+l .
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With tl = l∆t,

f (ω) =
L∑

l=−L

wl e
iωtl , (9)

which allows us to calculate the filter response function f (ω) from
the given weights of a time domain filter.

E.g., moving average filters have the general form

x̃n =
L∑

l=−L

(
1

2L + 1

)
xn+l . (10)

Another commonly used filter is the 3-point triangular filter,

x̃n =
1

4
xn−1 +

1

2
xn +

1

4
xn+1 , (11)
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which is better than the 3-point moving average filter in removing
grid-scale noise (Emery and Thomson, 1997).

Q2: Suppose the data are dominated by grid-scale noise, i.e. the
data in 1-dimension have adjacent grid points simply flipping signs
like . . . ,−1,+1, −1,+1,−1, +1, . . ., what happens (a) when you
apply the 3-point moving-average filter to the data once? twice?
(b) when you apply the triangular filter to the data once? twice?
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One often encounters time series containing strong periodic signals,
e.g. the seasonal cycle or tidal cycles. While these periodic signals
are important, it is often the non-periodic signals which have the
most impact on humans, as they produce the unexpected events.
One often would remove the strong periodic signals from the time
series first.

Suppose one has monthly data for a variable x , and one would like
to extract the seasonal cycle. Average all x values in January to get
x jan, and similarly for the other months. The climatological seasonal
cycle is then given by

x seasonal = [x jan, · · · , xdec] . (12)

The filtered time series is obtained by subtracting this climatological
seasonal cycle from the raw data— i.e. all January values of x will
have x jan subtracted, and similarly for the other months.
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For tidal cycles, harmonic analysis is commonly used to extract the
tidal cycles from a record of duration T . The tidal frequencies ωn

are known from astronomy, and one assumes the tidal signals are
sinusoidal functions of amplitude An and phase θn. The best fit of
the tidal cycle to the data is obtained by a least squares fit,
i.e. minimize ∫ T

0

[x(t)−
∑
n

An cos(ωnt + θn)]2 dt , (13)

by finding the optimal values of An and θn.

If T is short, then tidal components with close related frequencies
cannot be separately resolved.
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A time series with the tides filtered is given by

x̃(t) = x(t)−
∑
n

An cos(ωnt + θn) . (14)
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