
Ch.4 Time series analysis [Book, Ch.3]

We have surveyed the linear multivariate techniques for extracting
features or recognizing patterns in a dataset or in two datasets,
without considering time as an explicit factor. In the real world, the
variables may be governed by dynamical equations, and the
manifested patterns evolve with time.

We will look at:
(1) Classical Fourier spectral analysis as a first step in analyzing the
temporal behaviour in a time series.

(2) Windows and filters.

(3) Singular spectrum analysis (SSA).
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4.1 Spectrum [Book, Sect. 3.1]
With time series data, an alternative way to view the data is via the
frequency representation. Given a function y(t) defined on the
interval [0,T ], the Fourier series representation for y(t) is

ŷ(t) =
a0
2

+
∞∑

m=1

[am cos(ωmt) + bm sin(ωmt)], (1)

with the (angular) frequency ωm given by

ωm =
2πm

T
, m = 1, 2, · · · (2)

and the Fourier coefficients am and bm given by

am =
2

T

∫ T

0

y(t) cos(ωmt) dt, m = 0, 1, 2, · · · (3)
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bm =
2

T

∫ T

0

y(t) sin(ωmt) dt, m = 1, 2, · · · (4)

With

a0 =
2

T

∫ T

0

y(t) dt, (5)

we see that
a0/2 = y , (6)

the mean of y .

If y(t) is a continuous function, then Eq.(1) has ŷ(t)→ y(t).

If y is discontinuous at t, then ŷ(t)→ [y(t+) + y(t−)]/2.

For a discrete time series, y(t) is replaced by
y(tn) ≡ yn, n = 1, · · · ,N .
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With a sampling interval ∆t = T/N , the observations are made at
time tn = n∆t.

The discrete Fourier series representation is

yn =
a0
2

+
M∑

m=1

[am cos(ωmtn) + bm sin(ωmtn)], (7)

where M is the largest integer ≤ N/2, with the Fourier coefficients:

am =
2

N

N∑
n=1

yn cos(ωmtn), m = 0, 1, 2, · · · ,M , (8)

bm =
2

N

N∑
n=1

yn sin(ωmtn), m = 1, 2, · · · ,M . (9)
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For N even, bM = 0, so the number of nontrivial Fourier coefficients
is N .

The cosine and sine functions have orthogonality properties:

N∑
n=1

cos(ωltn) cos(ωmtn) =
N

2
δlm ,∑

n

sin(ωltn) sin(ωmtn) =
N

2
δlm ,∑

n

cos(ωltn) sin(ωmtn) = 0 , (10)

where δlm is the Kronecker delta function.
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4.1.1 Autospectrum [Book, Sect. 3.1.1]

The variance of the time series y can be written as:

var(y) =
1

N

N∑
n=1

(yn − y)2 =
1

N

∑
n

(yn −
a0
2

)2

=
1

N

∑
n

[∑
m

(am cos(ωmtn) + bm sin(ωmtn))

]2
. (11)

Using (10), var(y) can be expressed in terms of the Fourier
coefficients,

var(y) =
1

2

∑
m

(a2m + b2m). (12)
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The autospectrum, also called the spectrum, the power spectrum or
the periodogram, is defined as

Sm =
N∆t

4π
(a2m + b2m). (13)

Thus (12) can be expressed as

var(y) =
∑
m

Sm∆ω, (14)

∆ω =
2π

T
=

2π

N∆t
. (15)
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Hence, the spectrum Sm can be viewed as the variance or ‘energy’ in
the ωm frequency band (with bandwidth ∆ω), and the total variance
var(y) can be computed by integrating Sm over all frequency bands.

When Sm is plotted as a function of the frequency, peaks in Sm

reveal the frequencies where the energy is relatively high.
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The lowest frequency in the spectrum, known as the fundamental
frequency, is

ω1 =
2π

T
, or f1 =

1

T
. (16)

Often a time series displays a trend, i.e. a positive or negative slope
in the data over the time record.

E.g. Canadian prairie wheat yield shows a positive trend with time,
largely due to the gradual improvement in agricultural technology.
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The frequency associated with a trend is lower than the
fundamental frequency, thus energy from the trend will leak to other
low frequency spectral bands, thereby distorting the low frequency
part of the spectrum.

By subtracting the linear regression line from the data time series,
trends can easily be removed prior to spectral analysis.

The highest resolvable frequency from (2) is ω = 2πM/T , but with
M ≈ N/2, we have M/T ≈ 1/(2∆t). Hence the highest resolvable
frequency, called the Nyquist frequency, is

ωN =
π

∆t
, or fN =

1

2∆t
. (17)
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To resolve a wave of period τ , we need at least two data points to
cover the period τ , i.e. τ = 2∆t = 1/fN .

Aliasing arises when the sampling time interval ∆t is too large to
resolve the highest frequency oscillations in the data. From the
observations (dots), an incorrect signal (dashed curve) of much
lower frequency is inferred by the observer.
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In a spectrum, signals with frequency above the Nyquist frequency
are reflected across the Nyquist frequency into the frequency bands
below the Nyquist frequency— resulting in a distortion of the high
frequency part of the spectrum.
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From (15), the frequency ∆ω between adjacent frequency bands is

∆ω =
2π

T
. (18)

The ability to resolve neighbouring spectral peaks is controlled by
∆ω, which is proportional to 1/T .

A longer record T will yield sharper spectral peaks, allowing the
resolution of two signals with close-by frequencies as distinct peaks
in the spectrum.

Q1: If you have an instrument taking one measurement every
second for 24 hours. What are (a) the fundamental frequency ω1,
(b) the Nyquist frequency ωN and (c) ∆ω, the frequency between
two adjacent frequency bands?
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The raw spectrum Sm calculated from (13) is often very noisy in
appearance. Two common methods for smoothing the spectrum:
(a) band-averaging (the Daniell estimator)
(b) ensemble averaging.

In (a), a moving average (or running mean) is applied to the raw
spectrum

S̃m =
1

(2K + 1)

K∑
k=−K

Sm+k , (19)

where S̃m is the smoothed spectrum resulting from averaging the
raw spectrum over 2K + 1 frequency bands.

In (b), data record is divided into J blocks of equal length L = T/J .

Compute the periodogram for each block to get S
(j)
m (j = 1, · · · , J).
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The spectrum Sm is the ensemble average over the J periodograms:

Sm =
1

J

J∑
j=1

S (j)
m . (20)

Method (b) has an advantage over (a) when there are data gaps—
in (b), the data gaps do not pose a serious problem since the data
record is to be chopped into J blocks anyway, whereas in (a), the
data gaps may have to be filled with interpolated values or zeros.

The disadvantage of (b) is that the lowest resolvable frequency is
f1 = 1/L = J/T , hence there is a loss of low frequency information
when the record is chopped up.

There is a trade-off between the variance of the spectrum S and the
band width. Increasing the band width (by increasing K or J) leads
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to a less noisy S , but spectral peaks are broadened, so that nearby
spectral peaks may merge together, resulting in a loss of resolution.
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Figure : [From Emery and Thomson (1997)] 18 / 29



In complex notation, the Fourier transform

ŷm =
2

N

N∑
n=1

yn e
−iωmtn , (21)

= am − ibm , (22)

where (8) and (9) have been invoked. Eq.(13) can be written as

Sm =
N∆t

4π
|ŷm|2 . (23)

Optional material:
Prove that the spectrum is related to the auto-covariance function
by a Fourier transform:
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Assume {yn} is stationary and the mean y has been subtracted from
the data, then

Sm =
∆t

Nπ

[∑
n

yn e
−iωmtn

][∑
j

yj e
iωmtj

]
, (24)

=
∆t

π

N−1∑
l=−(N−1)

[
1

N

(∑
j−n=l

ynyj

)]
e iωmtl . (25)

In general, the auto-covariance function with lag l is defined as

Cl =
1

N

N−l∑
n=1

(yn − y)(yn+l − y) . (26)
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Here (with y = 0), we have the important relation

Sm =
∆t

π

N−1∑
l=−(N−1)

Cl e
iωmtl , (27)

i.e. the spectrum Sm is related to the auto-covariance function Cl by
a Fourier transform.

4.1.2 Cross-spectrum [Book, Sect. 3.1.2]

Consider two time series, x1, · · · , xN and y1, · · · , yN , with respective
Fourier transforms x̂m and ŷm (which are in general complex
numbers). The cross-spectrum

Cm =
N∆t

4π
x̂mŷ

∗
m , (28)
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where asterisk denotes complex conjugation, so Cm is in general
complex. If ŷm = x̂m, Cm reduces to Sm, which is real.

Cm can be split into real and imaginary parts,

Cm = Rm + i Im , (29)

where Rm is the co-spectrum and Im is the quadrature spectrum.

Cm can also be expressed in polar form,

Cm = Am e iθm , (30)

where Am is the amplitude spectrum and θm, the phase spectrum,
with

Am = [R2
m + I 2m ]

1
2 and θm = tan−1(Im /Rm) . (31)
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A useful quantity is the squared coherency spectrum (where the
word ‘squared’ is often omitted for brevity):

r 2m =
A2
m

S
(x)
m S

(y)
m

, (32)

where S
(x)
m , S

(y)
m are the autospectrum for the x and y time series,

respectively.

Can interpret r 2m as the square of the correlation between x and y in
the mth frequency band. However, if one does not perform band
averaging or ensemble averaging, then r 2m = 1, i.e. perfect
correlation for all m!

To see this, let

x̂m = am e iαm and ŷm = bm e iβm . (33)
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Eq.(28) becomes

Cm =
N∆t

4π
am bm e i(αm−βm) . (34)

Thus

Am =
N∆t

4π
am bm and θm = αm − βm . (35)

Also,

S (x)
m =

N∆t

4π
a2m , and S (y)

m =
N∆t

4π
b2m . (36)

Substituting these into eq.(32) yields r 2m = 1. The reason is that in
a single frequency band, the x and y signals are simply sinusoidals
of the same frequency, which are perfectly correlated (other than a
possible phase shift between the two).
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Suppose there is no real relation between x̂m and ŷm, then the phase
αm − βm tends to be random. Consider ensemble averaging, with

Cm =
1

J

J∑
j=1

C (j)
m . (37)

With random phase, the C
(j)
m vectors are randomly oriented in the

complex plane, so the summing of the C
(j)
m vectors tends not to

produce a Cm vector with large magnitude Am. In general for large
J , A2

m � S
(x)
m S

(y)
m , resulting in a small value for r 2m, as desired.

Thus some form of ensemble averaging or band averaging is
essential for computing the squared coherency spectrum— without
the averaging, even random noise has r 2m equal to unity.
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Figure : [From von Storch and Zwiers (1999)] 26 / 29



It can also be shown that the cross-spectrum is the Fourier
transform of the cross-covariance γ, where

γ =
1

N

N−l∑
n=1

(xn − x)(yn+l − y) . (38)

Spectral functions in Matlab

The autospectrum (periodogram) can be computed by using
www.mathworks.com/help/toolbox/signal/ref/periodogram.

html

[S, omega] = periodogram(y)
where S, the autospectrum, is a function of omega, the angular
frequency, and y is the original time series.
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Fast Fourier Transform (FFT) is particularly fast when the number
of data points is in powers of 2, the default of the periodogram
function tries to use this property.
[S, omega] = periodogram(y, [], nfft)

where nfft is the number of data points to be used in the FFT (e.g.
nfft = total number of data points).
[S, omega] = periodogram(y, window, nfft)

allows user to specify a window (discussed later in this chapter).

Cross-spectral analysis can be done using Matlab functions
mscohere and cpsd:
http://www.mathworks.com/help/signal/ug/

cross-spectrum-and-magnitude-squared-coherence.html

Spectral and cross-spectral analysis can also be done using the FFT
function provided by Matlab.

28 / 29

http://www.mathworks.com/help/signal/ug/cross-spectrum-and-magnitude-squared-coherence.html
http://www.mathworks.com/help/signal/ug/cross-spectrum-and-magnitude-squared-coherence.html


www.mathworks.com/help/techdoc/ref/fft.html

fx = fft(x)
where fx is the (discrete) Fourier transform of x computed by an
FFT algorithm.
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