Chapter 3 lecture questions

Q1: Prove that \mathbf{M}_f and \mathbf{M}_g are positive semi-definite symmetric matrices.

Solution:

Ignoring subscripts for brevity, we write $\mathbf{M}_f = \mathbf{C}\mathbf{C}^{\mathrm{T}}$. Using the identity $(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$,

$$\mathbf{M}_{f}^{\mathrm{T}} = (\mathbf{C}\mathbf{C}^{\mathrm{T}})^{\mathrm{T}} = (\mathbf{C}^{\mathrm{T}})^{\mathrm{T}}\mathbf{C}^{\mathrm{T}} = \mathbf{C}\mathbf{C}^{\mathrm{T}} = \mathbf{M}_{f},$$
(1)

so \mathbf{M}_f is a symmetric matrix.

To prove it is a positive semi-definite matrix, for any nonzero vector \mathbf{v} ,

$$\mathbf{v}^{\mathrm{T}}\mathbf{M}_{f}\mathbf{v} = \mathbf{v}^{\mathrm{T}}\mathbf{C}\mathbf{C}^{\mathrm{T}}\mathbf{v} = (\mathbf{C}^{\mathrm{T}}\mathbf{v})^{\mathrm{T}}\mathbf{C}^{\mathrm{T}}\mathbf{v} = \mathbf{a}^{\mathrm{T}}\mathbf{a} = \|\mathbf{a}\|^{2} \ge 0,$$
(2)

where $\mathbf{a} = \mathbf{C}^{\mathrm{T}} \mathbf{v}$. Hence \mathbf{M}_{f} is a positive semi-definite, symmetric matrix. Proof for \mathbf{M}_{g} is similar.