
Ch.3 Canonical correlation analysis (CCA) [Book, Sect. 2.4]

With 2 sets of variables {xi} and {yj}, canonical correlation analysis
(CCA), first introduced by Hotelling (1936), finds the linear modes
of maximum correlation between {xi} and {yj}.

CCA is a generalization of the Pearson correlation between two
variables x and y to two sets of variables {xi} and {yj}.

CCA: Find f1 and g1, so that the correlation between fT1 x and gT
1 y

is maximized.

Next find f2 and g2 so that the correlation between fT2 x and gT
2 y is

maximized, with fT2 x and gT
2 y uncorrelated with both fT1 x and gT

1 y.

And so forth for the higher modes.
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3.1 CCA theory [Book, Sect. 2.4.1]
Consider two datasets

x(t) = xil , i = 1, · · · , nx , l = 1, · · · , nt , (1)

and
y(t) = yjl , j = 1, · · · , ny , l = 1, · · · , nt . (2)

i.e. x and y need not have the same spatial dimensions, but need
the same time dimension nt . Assume x and y have zero means. Let

u = fTx, v = gTy . (3)

The correlation

ρ =
cov(u, v)√
var(u) var(v)

=
cov(fTx, gTy)√
var(u) var(v)

=
fTcov(x, y)g√

var(fTx) var(gTy)
,

(4)
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where we have invoked

cov(fTx, gTy) = E[fTx gTy] = E[fTx yTg] = fTE[xyT]g . (5)

We want u and v , the two canonical variates or canonical
correlation coordinates, to have maximum correlation between
them, i.e. f and g are chosen to maximize ρ.

We are free to normalize f and g as we like, because if f and g
maximize ρ, so will αf and βg, for any positive α and β.
We choose the normalization condition

var(fTx) = 1 = var(gTy) . (6)

Since

var(fTx) = cov(fTx, fTx) = fTcov(x, x)f ≡ fTCxx f , (7)
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and
var(gTy) = gTCyyg , (8)

(6) implies
fTCxx f = 1 , gTCyyg = 1 . (9)

With (6), (4) reduces to

ρ = fTCxyg , (10)

where Cxy = cov(x, y).

Problem is to maximize (10) subject to constraints (9).

Use method of Lagrange multipliers [Book, Appendix B], where we
incorporate the constraints into the Lagrange function L,

L = fTCxyg + α(fTCxx f − 1) + β(gTCyyg − 1) , (11)
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where α and β are the unknown Lagrange multipliers.

To find the stationary points of L, we need

∂L

∂f
= Cxyg + 2αCxx f = 0 , (12)

and
∂L

∂g
= CT

xy f + 2βCyyg = 0 . (13)

Hence
C−1xx Cxyg = −2αf , (14)

and
C−1yy CT

xy f = −2βg . (15)

Substituting (15) into (14) yields

C−1xx CxyC−1yy CT
xy f ≡Mf f = λf , (16)
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with λ = 4αβ. Similarly, substituting (14) into (15) gives

C−1yy CT
xyC−1xx Cxy g ≡Mgg = λg . (17)

Both these equations can be viewed as eigenvalue equations, with
Mf and Mg sharing the same non-zero eigenvalues λ.

As Mf and Mg are known from the data, f can be found by solving
the eigenvalue problem (16).

βg can then be obtained from (15). Since β is unknown, the
magnitude of g is unknown, and the normalization conditions (9)
are used to determine the magnitude of g and f.

Alternatively, one can use (17) to solve for g first, then obtain f
from (14) and the normalization condition (9).
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The matrix Mf is of dimension nx × nx , while Mg is ny × ny , so one
usually picks the smaller of the two to solve the eigenvalue problem.

From (10),

ρ2 = fTCxyg gTCT
xy f = 4αβ (fTCxx f) (gTCyyg) , (18)

where (12) and (13) have been invoked. From (9), (18) reduces to

ρ2 = λ. (19)

The eigenvalue problems (16) and (17) yield n number of λs, with
n = min(nx , ny ).

Assuming the λs to be all distinct and nonzero, we have for each λj
(j = 1, . . . , n), canonical variates, uj and vj , with correlation
ρj =

√
λj between the two, and eigenvectors, fj and gj .
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It can be shown that

cov(uj , uk) = cov(vj , vk) = δjk , and cov(uj , vk) = 0 if j 6= k .
(20)

Write the forward mappings from the variables x(t) and y(t) to the
canonical variates u(t) = [u1(t), · · · , un(t)]T and
v(t) = [v1(t), · · · , vn(t)]T as

u = [fT1 x, · · · , fTn x]T = FTx, v = GTy (21)

Next, find the inverse mapping from u = [u1, · · · , un]T and
v = [v1, · · · , vn]T to the original variables x and y. Let

x = Fu, y = Gv . (22)
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We note that

cov(x,u) = cov(x,FTx) = E[x(FTx)T] = E[x xTF ] = CxxF ,
(23)

and
cov(x,u) = cov(F u,u) = F cov(u,u) = F . (24)

Eqs. (23) and (24) imply

F = CxxF . (25)

Similarly,
G = CyyG . (26)

Hence the inverse mappings F and G (from the canonical variates to
x and y) can be calculated from the forward mappings FT and GT .
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The matrix F is composed of column vectors Fj , and G, of column
vectors Gj . Fj and Gj are the canonical correlation patterns
associated with uj and vj .

In general, orthogonality of vectors within a set is not satisfied by
any of the four sets {Fj}, {Gj}, {fj} and {gj}, while

cov(ui , uj) = cov(vi , vj) = cov(ui , vj) = 0, for i 6= j . (27)
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Figure : The CCA solution in the x and y spaces. Vectors F1 and G1 are
the canonical correlation patterns for mode 1, and u1(t) is the amplitude
of the “oscillation” along F1, and v1(t), the amplitude along G1. Vectors
F1 and G1 have been chosen so that the correlation between u1 and v1 is
maximized. Next F2 and G2 are found, together with u2(t) and v2(t).
The correlation between u2 and v2 is again maximized, but with
cov(u1, u2) = cov(v1, v2) = cov(u1, v2) = cov(v1, u2) = 0.
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Unlike PCA, F1 and G1 need not be not oriented in the direction of
maximum variance.

Solving for F1 and G1 is analogous to performing rotated PCA in
the x and y spaces separately, with the rotations determined from
maximizing the correlation between u1 and v1.

3.2 Pre-filter with PCA [Book, Sect. 2.4.2]

When x and y contain many variables, it is common to use PCA to
pre-filter the data to reduce the dimensions of the datasets, i.e.
apply PCA to x and y separately, extract the leading PCs, then
apply CCA to the leading PCs of x and y.
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Using Hotelling’s choice of scaling for the PCAs, we express the
PCA expansions as

x =
∑
j

a′je
′
j , y =

∑
j

a′′j e′′j . (28)

CCA is then applied to

x̃ = [a′1, · · · , a′mx
]T, ỹ = [a′′1 , · · · , a′′my

]T , (29)

where only the first mx and my modes are used.

Another reason for using the PCA pre-filtering is that when the
number of variables is not small relative to the sample size, the CCA
method may become unstable (Bretherton et al., 1992).
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Why? In the relatively high-dimensional x and y spaces, among the
many dimensions and using correlations calculated with relatively
small samples, CCA can often find directions of high correlation but
with little variance, thereby extracting a spurious leading CCA
mode, as illustrated.
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Figure : With the ellipses denoting the data clouds in the two input
spaces, the dotted lines illustrate directions with little variance but by
chance with high correlation (as illustrated by the perfect order in which
the data points 1, 2, 3 and 4 are arranged in the x and y spaces). Since
CCA finds the correlation of the data points along the dotted lines to be
higher than that along the dashed lines (where the data points a, b, c
and d in the x-space are ordered as b, a, d and c in the y-space), the
dotted lines are chosen as the first CCA mode.

Maximum covariance analysis (MCA), which looks for modes of
maximum covariance instead of maximum correlation, would select
the dashed lines over the dotted lines since the length of the lines do
count in the covariance but not in the correlation, hence MCA is
stable even without pre-filtering by PCA.

15 / 25



The instability problem can also be avoided by pre-filtering using
PCA, as this avoids applying CCA directly to high-dimensional input
spaces (Barnett and Preisendorfer, 1987).

With Hotelling’s scaling,

cov(a′j , a
′
k) = δjk , cov(a′′j , a

′′
k) = δjk , (30)

leading to
Cx̃ x̃ = Cỹ ỹ = I . (31)

Eqs.(16) and (17) simplify to

Cx̃ ỹCT
x̃ ỹ f ≡Mf f = λf , (32)

CT
x̃ ỹCx̃ ỹ g ≡Mgg = λg . (33)
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Q1: Prove that Mf and Mg are positive semi-definite symmetric
matrices.

———
As Mf and Mg are positive semi-definite symmetric matrices, the
eigenvectors {fj} {gj} are now sets of orthonormal vectors.
Eqs.(25) and (26) simplify to

F = F , G = G . (34)

Hence {Fj} and {Gj} are also two sets of orthonormal vectors, and
are identical to {fj} and {gj}, respectively.

Because of these nice properties, pre-filtering by PCA (with the
Hotelling scaling) is recommended when x and y have many
variables (relative to the sample size).
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However, the orthogonality only holds in the reduced dimensional
spaces, x̃ and ỹ. If transformed into the original space x and y, {Fj}
and {Gj} are in general not two sets of orthogonal vectors.

CCA mode 1 of the tropical Pacific sea level pressure (SLP) field
and the SST field:
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Figure : The CCA mode 1 for (a) the SLP anomalies and (b) the SST
anomalies of the tropical Pacific. As u1(t) and v1(t) fluctuate together
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from one extreme to the other as time progresses, the SLP and SST
anomaly fields, oscillating as standing wave patterns, evolve from an El
Niño to a La Niña state. The pattern in (a) is scaled by
ũ1 = [max(u1)−min(u1)]/2, and (b) by ṽ1 = [max(v1)−min(v1)]/2.
Contour interval is 0.5 hPa in (a) and 0.5◦C in (b).

The canonical variates u and v (not shown) fluctuate with time,
both attaining high values during El Niño, low values during La
Niña, and neutral values around zero during normal conditions.

3.3 Maximum covariance analysis (MCA) [Book, Sect. 2.4.3]
Instead of maximizing the correlation as in CCA, one can maximize
the covariance between two datasets. This alternative method is
often called the singular value decomposition (SVD). However, von
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Storch and Zwiers (1999) proposed the name maximum covariance
analysis (MCA) as more appropriate.

MCA is identical to CCA except that it maximizes the covariance
instead of the correlation.

CCA can be unstable when working with relatively large number of
variables, in that directions with high correlation but negligible
variance may be selected by CCA, hence the recommended
pre-filtering of data by PCA before applying CCA.

MCA, by using covariance instead of correlation, does not have the
unstable nature of the CCA, so no need for pre-filtering by PCA.
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In MCA, perform SVD on the data covariance matrix Cxy ,

Cxy = USVT , (35)

where the matrix U contains the left singular vectors fi , V the right
singular vectors gi , and S the singular values. Maximum covariance
between ui and vi is attained (Bretherton et al., 1992) with

ui = fTi x, vi = gT
i y . (36)

The inverse transform is given by

x =
∑
i

ui fi , y =
∑
i

vigi . (37)

For most applications, MCA yields rather similar results to the CCA
(with PCA pre-filtering) (Bretherton et al., 1992; Wallace et al.,
1992).
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CCA functions in Matlab

www.mathworks.com/help/toolbox/stats/canoncorr.html

[A, B, rho, U, V] = canoncorr(X,Y)

X and Y are the transpose of my data matrices, the transpose of U
and V have columns giving the vectors u and v, respectively, and
the transpose of A ad B are the matrices F and G, respectively.
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