2.13 Rotated principal component analysis [Book, Sect. 2.2]
Fig.: PCA applied to a dataset composed of (a) 1 cluster, (b)

2 clusters, (c) and (d) 4 clusters. In (c), an orthonormal rotation

and (d) an oblique rotation gave rotated eigenvectors &;, (j =1, 2).

(a) (b)




PCA finds the linear mode which captures the most variance of the
dataset. The eigenvectors may not align close to local data clusters,
so the eigenvectors may not represent actual physical states well.

The rotated PCA (RPCA) methods rotate the PCA eigenvectors, so
they point closer to the local clusters of data points.

Thus the rotated eigenvectors may bear greater resemblance to
actual physical states (though they account for less variance) than
the unrotated eigenvectors.

RPCA, also called rotated EOF analysis, and in statistics, PC factor
analysis, is a more general but more subjective technique than PCA.

Review the rotation of vectors and matrices:
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Given a matrix P composed of the column vectors py,...,pm, and a
matrix Q containing the column vectors qq, ..., q,, then P can be
transformed into Q by Q = PR, i.e.

qii = Zpijrjl; (1)
J

where R is a rotation matrix with elements ry. When R is

orthonormal, i.e.
RTR =1, (2)

the rotation is called an orthonormal rotation. Clearly,
R!=R" (3)

for an orthonormal rotation. If R is not orthonormal, the rotation is
an oblique rotation.



Q6: Which of the following matrices are orthonormal?
0 -1 cosf —sind
(2) [ 1 0 } and (b) [ sinf  cosf }

Given the data matrix Y,

y,, (Z e,JaJ,) = Z(&'ja;F = EAT’
J

we rewrite it as o
Y = ERR!AT = EAT
with 5
E =ER
and
AT =R AT,



E has been rotated into E', and A into A.
If R is orthonormal, (3) and (7) yield

A =AR. (8)

To see the orthogonality properties of the rotated eigenvectors, we

note that o
E'E=R'E'ER = R"DR, (9)

where the diagonal matrix D is
D = diag(efes,...,eren). (10)

If eJ-TeJ- =1, for all j, then D =1 and (9) reduces to

E'TE=R'TR=1, (11)



i.e. the {&;} are orthonormal. Hence the rotated eigenvectors {&;}

are orthonormal only if the original eigenvectors {e;} are
orthonormal.

If {e;} are orthogonal but not orthonormal, then {&;} are in general

not orthogonal.

Recall the PCs {a;(t;)} are uncorrelated, i.e. the covariance matrix

Caa = diag(af,. .., a}),

where

With the rotated PCs, their covariance matrix is

Cii = COV(RTAT, AR) = RT coV(AT7 AR = RT CaaR.

(12)

(13)

(14)
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Hence Cjj is diagonal only if Can =1, ie. ajTaj =1, for all j.

2 cases:

Case a: If we choose efe; = 1, for all j, we cannot have a/a; = 1,
for all j. This implies that {&;} are not uncorrelated, but {&;} are
orthonormal.

Case b: If we choose ajTaj =1, for all j, we cannot have ejTej =1,
for all j. This implies that {&;} are uncorrelated, but {&;} are not
orthonormal.

PCA can have both {e;} orthonormal and {a;} uncorrelated, but
RPCA can only possess one of these two properties.

In general, out of a total of m PCA modes, only the k leading ones
are selected for rotation, with the rest discarded.
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Many possible criteria for rotation = many RPCA schemes.

Richman (1986) listed 5 orthogonal and 14 oblique rotation
schemes.

Varimax scheme (Kaiser, 1958) is most popular among orthogonal
rotation schemes.

E.g. the first 2 eigenvectors are chosen for rotation. The data are
first projected onto the 2 PCA eigenvectors e; (j = 1,2) to get the

first two PCs
aj(t) = Z &ji il - (15)
With rotated eigenvectors &; , the rotated PCs are

() = Z &iiit - (16)



A common objective in rotation is to make 7(t;) either as large as
possible, or as close to zero as possible, i.e. to maximize the
variance of the square of the rotated PCs.




The rotation which has yielded |3;| < |a1|, |a2| < |&2], i.e. instead of
intermediate magnitudes for a;, a,, the rotated PCs have either
larger or smaller magnitudes.

Geometrically, this means the rotated axes (i.e. the eigenvectors)
point closer to actual data points than the unrotated axes.

If the rotated vector &, actually passes through the data point in the
Fig., then |4;| is zero, while |3,| assumes its largest possible value.

The varimax criterion is to maximize f(A) = ijzl var(&7), i.e.
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Kaiser (1958) found an iterative algorithm for finding the rotation
matrix R (see also Preisendorfer, 1988, pp.273-277).

In the above varimax criterion, (17) maximizes the variance of the
rotated squared PCs. An alternative (which is actually the one used
in traditional factor analysis) is to maximize the variance of the

rotated squared loadings &2 & i.e. maximize

f(E) = 2; Z["” [%Z;ef] : (18)

That the squared loadings are made as large as possible or as close
to zero as possible means that many of the loadings are essentially
set to zero, yielding loading patterns which have more localized
features than the unrotated patterns.
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E.g. Horel (1981) showed both the rotated and unrotated loading
patterns for the 500 mb height data of winter months in the
Northern Hemisphere, with the rotated patterns showing more
regionalized anomalies than the unrotated patterns, where the
anomalies were spread all over the Northern Hemisphere.

RPCA used to extract large scale teleconnection patterns/indices in
N.Hemisphere atmosphere
http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml



Fic. 1. Eigenvectors of the first o4 principal components derived from 500 mb height time series consisting of 45 winter
months (from Wallace and Gutzler, 1981). The value of the kth eigenvector at any location represents the temporal correlation
between the kth principal component and the time series of local 500 mb height. The gridpoints used are indicated in Fig. 4b
in the paper by Wallace and Gutzler (1981). The sign convention is arbitrary, and contour interval is 0.2,

ling vectors of the first fatir rotated principal components derived from the same data set and principal components
Fig. 1. The rotated principal components are a varimax Totation of the 19 principal components whose first four
eigenvectors are shown in Fig. 1. The value of the kth loading vector at any location represents the correlation between the kih
rotated principal component and local 500 mb height. The contour interval is 0.2. ;
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These two ways of performing rotation can be seen as working with
either the data matrix or the transpose of the data matrix. In PCA,
using the transpose of the data matrix does not change the results
(but can be exploited to save considerable computional time by
working with the smaller data covariance matrix).

In RPCA, taking the transpose reverses the role of the PCs and the
loadings, thereby changing from a rotational criterion on the
loadings to one on the PCs.

Richman (1986): applying rotational criterion on the loadings
yielded loading patterns with far fewer anomaly centres than
observed in typical 700 mb height anomaly maps of the Northern
Hemisphere, whereas applying rotational criterion on PCs yielded
loading patterns in good agreement with commonly observed
patterns.
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Four main disadvantages with PCA:

(i) Domain shape dependence: Often the PCA spatial modes are
related simply to the spatial harmonics than to physical states.

(ii) Subdomain instability: If the domain is divided into two parts,
then the PCA mode 1 spatial patterns for the subdomains may not
be similar to the spatial mode calculated for the whole domain.

Richman (1986) shows first 4 PCA spatial modes of the 3-day May—
August precipitation over central U.S.A.

(a) Left panels show the four modes computed for the whole
domain;

(b) right panels, the modes computed separately for the northern
and southern halves of the full domain. The dash lines in (b)
indicate the boundary of the two halves.

Insets show the basic harmonic patterns found by the modes.
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(iii) Degeneracy: If \; = )\, near degeneracy means eigenvectors e;
and e; cannot be estimated accurately by PCA.

(iv) Neglect of regional correlated patterns: Small regional
correlated patterns tend to be ignored by PCA, as PCA spatial
modes tend to be related to the dominant spatial harmonics.

RPCA improves on all (i) to (iv).

Four disadvantages with RPCA:

(i) Many possible choices for the rotation criterion: Richman (1986)
listed 19 types of rotation schemes. Critics complain that rotation is
too subjective. Furthermore, the rotational criterion can be applied
to the loadings or to the PCs, yielding different results.




(ii) Dependence on k, the number of PCA modes chosen for
rotation: If the first k PCA modes are selected for rotation,
changing k can lead to large changes in the RPCAs.

E.g., in RPCA, if one first chooses k = 3, then one chooses k = 4,
the first three RPCAs are changed. In PCA, if one first chooses
k = 3, then k = 4, the first three PCAs are unchanged.

(iii) Dependence on how the PCA eigenvectors and PCs are
normalized before rotation is performed.

(iv) Less variance explained: variance of the data accounted for by
the first k RPCA modes is < variance explained by the first kK PCA
modes.



Return to the tropical Pacific SST PCA modes. PC1-PC2 values are
shown as dots in a scatter plot, with La Nina states lie in the upper
left corner, and El Nifio states in the upper right corner.
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The first PCA eigenvector lies along the horizontal line, and the
second PCA, along the vertical line, neither of which would come
close to the El Nifio nor the La Nifia states.

Using the varimax criterion on the squared PCs, a rotation is
performed on the first 3 PCA eigenvectors.

The first RPCA eigenvector, shown as a dashed line, spears through
the cluster of El Nino states in the upper right corner.

In terms of variance explained, the first RPCA mode explained only
91.7% as much variance as the first PCA mode.



(a) PCA mode 1 (b) PCA mode 2
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Figure : SST anomalies pattern for PCA modes (a) 1 and (b) 2, and
RPCA modes (c) 1 and (d) 2, when their corresponding PC is at max.
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RPCA functions in Matlab

www.mathworks.com/help/toolbox/stats/rotatefactors.
html

[Erotate, R] = rotatefactors(E);

for varimax rotation (can also do other types of rotation). E is an
m X k matrix, containing the first k PCA eigenvectors, R is the k x k
rotation matrix, and Erotate = ER gives the rotated eigenvectors.
Note: my notation [m, n, k] equals Matlab's notation [d, n, m].

Can also use
www.mathworks.com/help/toolbox/stats/factoran.html

2.14 PCA for vectors [Book, Sect. 2.3]

N
N
w
S


www.mathworks.com/help/toolbox/stats/rotatefactors.html
www.mathworks.com/help/toolbox/stats/rotatefactors.html
www.mathworks.com/help/toolbox/stats/factoran.html

For vector variables, e.g. wind velocity (u, v), there are several
options for performing PCA:
(a) Simply apply PCA to the v field and to the v field separately.

(b) Do a combined PCA, i.e. treat the v variables as though they
were extra u variables, so the data matrix becomes

ux -+ g
u 1 ) u
Y — m mn ’ (19)
Viin, - Vip
| Vm1  Vmn |

where m is the number of spatial points and n the number of time
points. In cases (a) and (b), the vector can be generalized to > 2
dimensions.



If the vector is 2-dimensional, one has option (c): combine v and v
into a complex variable, and perform a complex PCA.
Let

w=u+iv. (20)

PCA applied to w allows the data matrix to be expressed as

Y = ZejajT, (21)
J

where the superscript *7 denotes the complex conjugate transpose.
Since the covariance matrix is Hermitian and positive-semi definite,
eigenvalues of C are real and non-negative, though e; and a; are in
general complex.



Write the /th component of a; as
aj = |ay| €™, (22)
then

Vo= ee P al. (23)
Jj

Interpret e;e % as each complex element of ; being rotated by the
same angle 6j during the /th time interval. Similarly, each element
of e; is amplified by the same factor |aj].

- — ‘ . e-[vyz

[ L
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Q7: Complex PCA is used to analyze the horizontal wind vectors
from two stations, with the first station located to the west of the
second station. The first eigenvector gives e = [L +1i, —i]. Sketch
the horizontal wind field at time (a) t = 1 when the first principal
component takes on the value —1, and at (b) t = 2, when the first
PC = —i.

When PCA is applied to real variables, the real e; and a; can both
be multiplied by —1. When PCA is applied to complex variables, an
arbitrary phase ¢; can be attached to the complex e; and a;, as
follows

Y = Z(eje"¢f)(e—"¢fa;T) . (24)

Often the arbitrary phase is chosen to make the interpretation of the
modes easier.
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E.g., in the analysis of the tropical Pacific wind field, Legler (1983)

chose ¢; so that e~'%a’" lies mainly along the real axis.
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In the ocean, dynamical theory predicts the near-surface wind-driven
current to spiral and diminish with depth, in the shape of an ‘Ekman
spiral’. This fascinating spiral shape was detected by the complex

PCA (Stacey et al., 1986).



Fig. 3. The mode 1 eigenfunction. Its direction
has been fixed by picking the arrow at 20 m to lic
along the direction of the principal axis of the
covariance matrix of the currents at 20 m. The
dots show the amplitude and direction as given by
the Ekman spiral. The wind direction is the
direction of the principal axis of the covariance
matrix of the wind.
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