
2.13 Rotated principal component analysis [Book, Sect. 2.2]
Fig.: PCA applied to a dataset composed of (a) 1 cluster, (b)

2 clusters, (c) and (d) 4 clusters. In (c), an orthonormal rotation
and (d) an oblique rotation gave rotated eigenvectors ẽj , (j =1, 2).
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PCA finds the linear mode which captures the most variance of the
dataset. The eigenvectors may not align close to local data clusters,
so the eigenvectors may not represent actual physical states well.

The rotated PCA (RPCA) methods rotate the PCA eigenvectors, so
they point closer to the local clusters of data points.
Thus the rotated eigenvectors may bear greater resemblance to
actual physical states (though they account for less variance) than
the unrotated eigenvectors.

RPCA, also called rotated EOF analysis, and in statistics, PC factor
analysis, is a more general but more subjective technique than PCA.

Review the rotation of vectors and matrices:
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Given a matrix P composed of the column vectors p1, . . . ,pm, and a
matrix Q containing the column vectors q1, . . . ,qm, then P can be
transformed into Q by Q = PR, i.e.

qil =
∑
j

pij rjl , (1)

where R is a rotation matrix with elements rjl . When R is
orthonormal, i.e.

RTR = I , (2)

the rotation is called an orthonormal rotation. Clearly,

R−1 = RT (3)

for an orthonormal rotation. If R is not orthonormal, the rotation is
an oblique rotation.
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Q6: Which of the following matrices are orthonormal?

(a)

[
0 −1
1 0

]
and (b)

[
cos θ − sin θ
sin θ cos θ

]
.

———
Given the data matrix Y,

Y = (yil) =

(
m∑
j=1

eijajl

)
=
∑
j

eja
T
j = EAT , (4)

we rewrite it as
Y = ERR−1AT = ẼÃT , (5)

with
Ẽ = ER (6)

and
ÃT = R−1AT . (7)
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E has been rotated into Ẽ, and A into Ã.
If R is orthonormal, (3) and (7) yield

Ã = AR . (8)

To see the orthogonality properties of the rotated eigenvectors, we
note that

ẼTẼ = RTETER = RTDR , (9)

where the diagonal matrix D is

D = diag(eT1 e1, . . . , e
T
mem) . (10)

If eTj ej = 1, for all j , then D = I and (9) reduces to

ẼTẼ = RTR = I , (11)
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i.e. the {ẽj} are orthonormal. Hence the rotated eigenvectors {ẽj}
are orthonormal only if the original eigenvectors {ej} are
orthonormal.

If {ej} are orthogonal but not orthonormal, then {ẽj} are in general
not orthogonal.

Recall the PCs {aj(tl)} are uncorrelated, i.e. the covariance matrix

CAA = diag(α2
1, . . . , α

2
m) , (12)

where
aTj aj = α2

j . (13)

With the rotated PCs, their covariance matrix is

CÃÃ = cov(RTAT,AR) = RT cov(AT,A)R = RT CAA R . (14)
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Hence CÃÃ is diagonal only if CAA = I, i.e. aTj aj = 1, for all j .

2 cases:
Case a: If we choose eTj ej = 1, for all j , we cannot have aTj aj = 1,
for all j . This implies that {ãj} are not uncorrelated, but {ẽj} are
orthonormal.

Case b: If we choose aTj aj = 1, for all j , we cannot have eTj ej = 1,
for all j . This implies that {ãj} are uncorrelated, but {ẽj} are not
orthonormal.

PCA can have both {ej} orthonormal and {aj} uncorrelated, but
RPCA can only possess one of these two properties.
In general, out of a total of m PCA modes, only the k leading ones
are selected for rotation, with the rest discarded.
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Many possible criteria for rotation ⇒ many RPCA schemes.

Richman (1986) listed 5 orthogonal and 14 oblique rotation
schemes.

Varimax scheme (Kaiser, 1958) is most popular among orthogonal
rotation schemes.

E.g. the first 2 eigenvectors are chosen for rotation. The data are
first projected onto the 2 PCA eigenvectors ej (j = 1, 2) to get the
first two PCs

aj(tl) =
∑
i

ejiyil . (15)

With rotated eigenvectors ẽj , the rotated PCs are

ãj(tl) =
∑
i

ẽjiyil . (16)
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A common objective in rotation is to make ã2j (tl) either as large as
possible, or as close to zero as possible, i.e. to maximize the
variance of the square of the rotated PCs.
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The rotation which has yielded |ã1| < |a1|, |a2| < |ã2|, i.e. instead of
intermediate magnitudes for a1, a2, the rotated PCs have either
larger or smaller magnitudes.

Geometrically, this means the rotated axes (i.e. the eigenvectors)
point closer to actual data points than the unrotated axes.

If the rotated vector ẽ2 actually passes through the data point in the
Fig., then |ã1| is zero, while |ã2| assumes its largest possible value.

The varimax criterion is to maximize f (Ã) =
∑k

j=1 var(ã
2
j ), i.e.

f (Ã) =
k∑

j=1

1

n

n∑
l=1

[ã2j (tl)]2 −

[
1

n

n∑
l=1

ã2j (tl)

]2 . (17)
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Kaiser (1958) found an iterative algorithm for finding the rotation
matrix R (see also Preisendorfer, 1988, pp.273-277).

In the above varimax criterion, (17) maximizes the variance of the
rotated squared PCs. An alternative (which is actually the one used
in traditional factor analysis) is to maximize the variance of the
rotated squared loadings ẽ2ji , i.e. maximize

f (Ẽ) =
k∑

j=1

 1

m

m∑
i=1

[ẽ2ji ]
2 −

[
1

m

m∑
i=1

ẽ2ji

]2 . (18)

That the squared loadings are made as large as possible or as close
to zero as possible means that many of the loadings are essentially
set to zero, yielding loading patterns which have more localized
features than the unrotated patterns.

11 / 32



E.g. Horel (1981) showed both the rotated and unrotated loading
patterns for the 500 mb height data of winter months in the
Northern Hemisphere, with the rotated patterns showing more
regionalized anomalies than the unrotated patterns, where the
anomalies were spread all over the Northern Hemisphere.

RPCA used to extract large scale teleconnection patterns/indices in
N.Hemisphere atmosphere
http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
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These two ways of performing rotation can be seen as working with
either the data matrix or the transpose of the data matrix. In PCA,
using the transpose of the data matrix does not change the results
(but can be exploited to save considerable computional time by
working with the smaller data covariance matrix).

In RPCA, taking the transpose reverses the role of the PCs and the
loadings, thereby changing from a rotational criterion on the
loadings to one on the PCs.

Richman (1986): applying rotational criterion on the loadings
yielded loading patterns with far fewer anomaly centres than
observed in typical 700 mb height anomaly maps of the Northern
Hemisphere, whereas applying rotational criterion on PCs yielded
loading patterns in good agreement with commonly observed
patterns.
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Four main disadvantages with PCA:
(i) Domain shape dependence: Often the PCA spatial modes are
related simply to the spatial harmonics than to physical states.
(ii) Subdomain instability: If the domain is divided into two parts,
then the PCA mode 1 spatial patterns for the subdomains may not
be similar to the spatial mode calculated for the whole domain.

Richman (1986) shows first 4 PCA spatial modes of the 3-day May–
August precipitation over central U.S.A.
(a) Left panels show the four modes computed for the whole
domain;
(b) right panels, the modes computed separately for the northern
and southern halves of the full domain. The dash lines in (b)
indicate the boundary of the two halves.
Insets show the basic harmonic patterns found by the modes.
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(iii) Degeneracy: If λi ≈ λj , near degeneracy means eigenvectors ei
and ej cannot be estimated accurately by PCA.
(iv) Neglect of regional correlated patterns: Small regional
correlated patterns tend to be ignored by PCA, as PCA spatial
modes tend to be related to the dominant spatial harmonics.

RPCA improves on all (i) to (iv).

Four disadvantages with RPCA:
(i) Many possible choices for the rotation criterion: Richman (1986)
listed 19 types of rotation schemes. Critics complain that rotation is
too subjective. Furthermore, the rotational criterion can be applied
to the loadings or to the PCs, yielding different results.
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(ii) Dependence on k , the number of PCA modes chosen for
rotation: If the first k PCA modes are selected for rotation,
changing k can lead to large changes in the RPCAs.

E.g., in RPCA, if one first chooses k = 3, then one chooses k = 4,
the first three RPCAs are changed. In PCA, if one first chooses
k = 3, then k = 4, the first three PCAs are unchanged.

(iii) Dependence on how the PCA eigenvectors and PCs are
normalized before rotation is performed.

(iv) Less variance explained: variance of the data accounted for by
the first k RPCA modes is ≤ variance explained by the first k PCA
modes.
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Return to the tropical Pacific SST PCA modes. PC1-PC2 values are
shown as dots in a scatter plot, with La Niña states lie in the upper
left corner, and El Niño states in the upper right corner.
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The first PCA eigenvector lies along the horizontal line, and the
second PCA, along the vertical line, neither of which would come
close to the El Niño nor the La Niña states.

Using the varimax criterion on the squared PCs, a rotation is
performed on the first 3 PCA eigenvectors.

The first RPCA eigenvector, shown as a dashed line, spears through
the cluster of El Niño states in the upper right corner.

In terms of variance explained, the first RPCA mode explained only
91.7% as much variance as the first PCA mode.
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(a)   PCA mode 1         
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(b)   PCA mode 2         
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(c)   RPCA mode 1        
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(d)   RPCA mode 2        
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(e)   max(u)  NLPCA      

0.5

0.5

1

1

1

1.5

1.5

2

2

2.5
3

3.
5 4

−0.5

−0
.5

150E 180E 150W 120W 90W 

20S

10S

  0

10N

20N

  

(f)   min(u)  NLPCA      
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Figure : SST anomalies pattern for PCA modes (a) 1 and (b) 2, and
RPCA modes (c) 1 and (d) 2, when their corresponding PC is at max.

21 / 32



RPCA functions in Matlab

www.mathworks.com/help/toolbox/stats/rotatefactors.

html

[Erotate, R] = rotatefactors(E);
for varimax rotation (can also do other types of rotation). E is an
m× k matrix, containing the first k PCA eigenvectors, R is the k× k
rotation matrix, and Erotate = ER gives the rotated eigenvectors.
Note: my notation [m, n, k] equals Matlab’s notation [d , n,m].

Can also use
www.mathworks.com/help/toolbox/stats/factoran.html

2.14 PCA for vectors [Book, Sect. 2.3]
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For vector variables, e.g. wind velocity (u, v), there are several
options for performing PCA:
(a) Simply apply PCA to the u field and to the v field separately.

(b) Do a combined PCA, i.e. treat the v variables as though they
were extra u variables, so the data matrix becomes

Y =


u11 · · · u1n
· · · · · · · · ·
um1 · · · umn

v11 · · · v1n
· · · · · · · · ·
vm1 · · · vmn

 , (19)

where m is the number of spatial points and n the number of time
points. In cases (a) and (b), the vector can be generalized to > 2
dimensions.
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If the vector is 2-dimensional, one has option (c): combine u and v
into a complex variable, and perform a complex PCA.
Let

w = u + iv . (20)

PCA applied to w allows the data matrix to be expressed as

Y =
∑
j

eja
∗T
j , (21)

where the superscript ∗T denotes the complex conjugate transpose.
Since the covariance matrix is Hermitian and positive-semi definite,
eigenvalues of C are real and non-negative, though ej and aj are in
general complex.
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Write the lth component of aj as

ajl = |ajl | eiθjl , (22)

then
Yil =

∑
j

eije
−iθjl |ajl | . (23)

Interpret eije
−iθjl as each complex element of ej being rotated by the

same angle θjl during the lth time interval. Similarly, each element
of ej is amplified by the same factor |ajl |.
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Q7: Complex PCA is used to analyze the horizontal wind vectors
from two stations, with the first station located to the west of the
second station. The first eigenvector gives eT1 = [1 + i, − i]. Sketch
the horizontal wind field at time (a) t = 1 when the first principal
component takes on the value −1, and at (b) t = 2, when the first
PC = −i.
———
When PCA is applied to real variables, the real ej and aj can both
be multiplied by −1. When PCA is applied to complex variables, an
arbitrary phase φj can be attached to the complex ej and aj , as
follows

Y =
∑
j

(eje
iφj )(e−iφja∗Tj ) . (24)

Often the arbitrary phase is chosen to make the interpretation of the
modes easier.
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E.g., in the analysis of the tropical Pacific wind field, Legler (1983)
chose φj so that e−iφja∗Tj lies mainly along the real axis.
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Figure : Imaginary component (top) & real component (bottom) of PC1.
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In the ocean, dynamical theory predicts the near-surface wind-driven
current to spiral and diminish with depth, in the shape of an ‘Ekman
spiral’. This fascinating spiral shape was detected by the complex
PCA (Stacey et al., 1986).
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Fig. 3. The mode 1 eigenfunction. Its direction 
has been fixed by picking the arrow at 20 m to lie 
along the direction of the principal axis of the 
covariance matrix of the currents at 20 m. The 
dots show the amplitude and direction as given by 
the Ekman spiral. The wind direction is the 
direction of the principal axis of the covariance 
matrix of the wind. 

V are measured relative to a coordinate 

system that has been rotated to make the 
Ekman spiral match the eigenfunction. The 
Ekman depth DE has been set equal to 325 
m, and Vo equals 0.66 in nondimensional 
units (6). The amplitude is about 10 cm 
sec-1 at 20 m, which is about 3% of the 
wind amplitude. The eddy viscosity, calcu- 
lated from DE (5), is 5300 cm2 sec-1. The 
mode 1 eigenfunction, over the depth range 
for which it dominates the variance, is in 
close quantitative agreement with the classi- 
cal Ekman spiral. This strongly suggests that 
Ekman's theory is the appropriate dynamical 
explanation in this region. Below about 160 
m, where the eigenfunction no longer domi- 
nates the variance, the Ekman spiral predicts 
amplitudes that are substantially less than 
those of the eigenfunction. There is evidence 
of strong tidal currents in the strait (they are 
in fact much more energetic than the wind- 
forced flow at depth) (3), so possibly the 
Ekman spiral has been modified by the 
interaction of the wind-forced and tidally 
forced motions, the modification being 
most noticeable at depth because that is 
where the tides are dominant. The presence 
of strong tides may also explain why the 
Ekman depth is larger than commonly 
found in the open ocean. Tidally generated 
turbulence may increase the depth to which 

wind-generated momentum can diffuse. 
The direction of the principal axis of the 

covariance matrix of the wind, relative to 
that of the currents at 20 m (which is the 
assumed direction at 20 m of the mode 1 
eigenfunction), is also shown in Fig. 3. As 
the simple theory predicts, the current is 
deflected to the right of the wind. The 
deflection is much less than the 45? predict- 
ed by Ekman's theory, but such a deviation 
is expected when there is a logarithmic, 
oceanic boundary layer near the ocean's 
surface (7). Also, the near-surface current 

profile may be substantially influenced by 
the tendency of the water column to become 
more stratified as the surface is approached. 
The Brunt-Vaisala frequency, 

N-( g aP a/2 

where g is the acceleration due to gravity 
and p is the water density, is a measure of the 

degree of stability of the water column (8) 
and can decrease from as much as 0.1 sec- 
near the surface, when there is overlying 
freshwater from river runoff, to about 0.02 
sec- at 20 m. From 20 to 300 m it 
decreases to about 0.005 sec-1 

According to Ekman's theory, in the 
Northern Hemisphere the depth-integrated 
transport is 90? to the right of the surface 
wind, independent of the eddy viscosity. 
The calculated transport, determined from 
the eigenfunction, is 79? to the right of the 
measured wind. This small discrepancy 
could be caused by a number offactors. Five 

possibilities are (i) the influence of the tides 
on the eigenfunction, (ii) the fact that the 

eigenfunction could not be calculated over 
the entire depth of the water column, (iii) 
the horizontal distance separating the cycle- 
sonde and the anemometer (Fig. 1), (iv) 
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topographic effects, and (v) differences be- 
tween the directions of the wind and the 
eigenfunction and the directions of the prin- 
cipal axes of the covariance matrices. 

The inner rotary cross-spectrum (9) of the 
wind with the time-dependent part of the 
mode 1 eigenfunction (Fig. 4) shows that 
the clockwise rotating components of each 
vector series are coherent over a broad range 
of frequencies (from about 0.1 to 0.2 cycle 
per day). The outer rotary cross-spectrum 
(Fig. 4) shows that the anticlockwise rotat- 
ing component of the eigenfunction is also 
coherent with the clockwise rotating com- 
ponent of the wind. The autospectrum of 
the wind shows that the clockwise rotating 
component is about twice as energetic as the 
anticlockwise rotating component over the 
range of frequencies for which there is co- 
herence with the eigenfunction; presumably 
this is why it is more coherent with the 
eigenfunction. Over the entire frequency 
range for which the eigenfunction has sub- 
stantial energy, both components of the 
eigenfunction are coherent with the wind, 
except at frequencies less than about 0.08 
cycle per day where the eigenfunction has 
energetic fluctuations that are not highly 
coherent with the wind. The fluctuations at 
those frequencies are caused primarily by the 
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Fig. 4. The inner coherency squared (solid lines) and outer coherency squared (dashed lines) of the 
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