
Principal component analysis (PCA)

2.6 Scaling the PCs and eigenvectors [Book, Sect. 2.1.6]
Various options for scaling the PCs {aj(t)} and the eigenvectors
{ej}. One can introduce an arbitrary scale factor α,

a′j =
1

α
aj , e′j = αej , (1)

so that
y − y =

∑
j

ajej =
∑
j

a′je
′
j . (2)

Thus aj(t) and ej are defined only up to an arbitrary scale factor.

With α = −1, one reverses the sign of both aj(t) and ej , which is
often done to make them more interpretable.
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Q3: Suppose the first PCA mode has the following EOF spatial
pattern and PC time series:

+	
-	


EOF	
 PC	


t	


You want the EOF to have positive anomalies on the left side
instead of on the right side. What would you do to achieve this and
what would the new PC look like?
———
Our choice for the scaling has so far been

eT
i ej = δij , (3)
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which was the choice of Lorenz (1956).

Q4: Show that with y − y =
∑m

j=1 ajej and eT
i ej = δij , the variance

of the data y is contained in {aj(t)}, with

var(y) = E
[
‖y − y‖2

]
= E

[
m∑
j=1

a2j

]
. (4)

———
Another common choice is Hotelling’s original choice

a′j =
1√
λj
aj , e′j =

√
λjej , (5)

whence

var(y) =
m∑
j=1

λj =
m∑
j=1

‖e′j‖2 , (6)
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cov(a′i , a
′
j) = δij . (7)

The variance of the original data is now contained in {ej}.

Regardless of the arbitrary scale factor, the PCA eigenvectors are
orthogonal and the PCs are uncorrelated.

If PCA is performed on the standardized variables ỹl , one can show
that the correlation

ρ(a′j(t), ỹl(t)) = e ′jl , (8)

the lth element of e′j (Jolliffe, 2002, p.25).
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Hence the lth element of e′j conveniently provides the correlation
between the PC a′j and the standardized variable ỹl , which is a
reason why Hotelling’s scaling (5) is also widely used.

2.7 Degeneracy of eigenvalues [Book, Sect. 2.1.7]

A degenerate case arises when λi = λj , (i 6= j). When two
eigenvalues are equal, their eigenspace is 2-D, i.e. a plane in which
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any two orthogonal vectors can be chosen as the eigenvectors, i.e.
the eigenvectors are not unique.

If l eigenvalues are equal, l non-unique orthogonal vectors can be
chosen in the l -dimensional eigenspace.

E.g. a propagating plane wave,

h(x , y , t) = A cos(ky − ωt) , (9)

which can be expressed in terms of two standing waves:

h = A cos(ky) cos(ωt) + A sin(ky) sin(ωt) . (10)
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If we perform PCA on h(x , y , t), we get two modes with equal
eigenvalues.

Q5: If we apply PCA to the propagating plane wave (9), what do
the two EOF spatial patterns look like and what do the
corresponding PCs look like?
————

As (10) is a PCA decomposition, with the two modes having the
same amplitude A, hence the eigenvalues λ1 = λ2, and the case is
degenerate.

Thus propagating waves in the data leads to degeneracy in the
eigenvalues.
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If one finds eigenvalues of very similar magnitudes from a PCA
analysis, that implies near degeneracy and there may be propagating
waves in the data.

In reality, noise in the data usually precludes λ1 = λ2 exactly.

When λ1 ≈ λ2, the near degeneracy causes the eigenvectors to be
rather poorly defined (i.e. very sensitive to noise in the data) (North
et al., 1982).

2.8 A smaller covariance matrix [Book, Sect. 2.1.8]

Let the data matrix be

Y =

 y11 · · · y1n
· · · · · · · · ·
ym1 · · · ymn

 , (11)
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where m is the number of spatial points and n the number of time
points. The columns of this matrix are simply the vectors
y(t1), y(t2), . . . , y(tn). Assuming

1

n

n∑
i=1

yji = 0 , (12)

i.e. the temporal mean has been removed, then

C =
1

n
YYT (13)

is an m ×m matrix.

The theory of singular value decomposition (SVD) (Book Sect.
2.1.10) tells us that the nonzero eigenvalues of YYT (an m ×m
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matrix) are exactly the nonzero eigenvalues of YTY (an n × n
matrix).

The size of the two matrices are often very different. E.g. for global
5◦ × 5◦ monthly sea level pressure data collected over 50 years, total
number of spatial grid points is m = 2592 while number of time
points is n = 600. Obviously, much easier to solve the eigen problem
for the 600× 600 matrix than that for the 2592× 2592 matrix.

Hence, when n < m, considerable computational savings can be
gained by first finding the eigenvalues {λj} and eigenvectors {vj}
for the alternative covariance matrix

C′ =
1

n
YTY , (14)
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i.e.
1

n
YTYvj = λjvj . (15)

Since

λjYvj = Yλjvj = Y
1

n
YTYvj ,

(
1

n
YYT)(Yvj) = λj(Yvj) . (16)

This equation is easily seen to be of the form

Cej = λjej , (17)

with
ej = Yvj , (18)

which means ej is an eigenvector for C.
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Summary: solving the eigen problem for the smaller matrix C′ yields
the eigenvalues {λj} and eigenvectors {vj}. The eigenvectors {ej}
for the bigger matrix C are then obtained from (18).

2.9 Temporal and spatial mean removal [Book, Sect. 2.1.9]

Given a data matrix Y as in (11), what type of mean are we trying
to remove from the data?

We have removed the temporal mean, i.e. the average of the jth
row, from each datum yji .

We could instead have removed the spatial mean, i.e. the average of
the ith column, from each datum yji .
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Which type of mean should be removed is very dependent on the
type of data one has. For most applications, one removes the
temporal mean.

For satellite sensed sea surface temperature data, the precision is
much better than the accuracy. Also, the subsequent satellite image
may be collected by a different satellite, which would have different
systematic errors. So more appropriate to subtract the spatial mean
of an image from each pixel (as was done in Fang and Hsieh, 1993).

Also possible to remove both the temporal and spatial means, by
subtracting the average of the jth row and then the average of the
ith column from each datum yji .

2.10 Singular value decomposition [Book, Sect. 2.1.10]
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Instead of solving the eigen problem of the data covariance matrix
C, a computationally more efficient way to perform PCA is via
singular value decomposition (SVD) of the m × n data matrix Y
given by (11) (Kelly, 1988).

Without loss of generality, we can assume m ≥ n, then the SVD
theorem (Strang, 2005) says that

Y = ESFT =

E

E′
m × n

0

m ×m

S

S′
n × n

0
m × n

FT

n × n
. (19)

The m ×m matrix E contains an m × n submatrix E′— and if
m > n, some zero column vectors.

14 / 26



The m × n matrix S contains the diagonal n × n submatrix S′, and
possibly some zero row vectors.
FT is an n × n matrix.
(If m < n, one can apply the above arguments to the transpose of
the data matrix).

E and F are orthonormal matrices, i.e.

ETE = I , FTF = I , (20)

where I is the identity matrix. The leftmost n columns of E contain
the n left singular vectors, and the columns of F the n right singular
vectors, while the diagonal elements of S′ are the singular values.

Using (19) and (20),

C =
1

n
YYT =

1

n
ESSTET . (21)

15 / 26



The matrix
SST ≡ Λ (22)

is diagonal and zero everywhere, except in the upper left n × n
corner, containing S′2.
Right multiply Eq.(21) by nE, and using (22) and (20) give

nCE = EΛ , (23)

where Λ contains the eigenvalues for the matrix nC.

Instead of solving the eigen problem (23), we use SVD to get E
from Y by (19). Eq.(23) implies that there are only n eigenvalues in
Λ from S′2, and the eigenvalues = (singular values)2. As (23) and
(17) are equivalent except for the constant n, the eigenvalues in Λ
are simply nλj , with λj the eigenvalues from (17).
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Similarly, for the other covariance matrix

C′ =
1

n
YTY , (24)

C′ =
1

n
FS′

2
FT , (25)

nC′F = FS′
2
. (26)

Hence the eigen problem (26) has the same eigenvalues as (23).

The PCA decomposition

y(t) =
∑
j

ejaj(t) , (27)
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is equivalent to the matrix form

Y = EAT =
∑
j

eja
T
j , (28)

where the eigenvector ej is the jth column in the matrix E, and the
PC aj(t) is the vector aj , the jth column in the matrix A. Eqs.(19)
and (28) yield

AT = SFT . (29)

From the SVD (19), we get the eigenvectors ej from E, and the PCs
aj(t) from A in (29).

Can also left multiply (28) by ET, and invoke (20) to get

AT = ETY . (30)
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Kelly (1988) pointed out that the SVD approach to PCA is at least
twice as fast as the eigen approach.

2.11 Missing data [Book, Sect. 2.1.11]
Missing data produce gaps in data records. If the gaps are small,
one can interpolate the missing values using neighbouring data. If
the gaps are not small, then instead of

C =
1

n
YYT , (31)

(assuming the means have been removed from the data), one
computes

ckl =
1

n′

∑
i

′
yki yil (32)

where the prime denotes that the summation is only over i with
neither yki nor yil missing— with a total of n′ terms in the
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summation. The eigenvectors ej can then be obtained from this new
covariance matrix.

The principal components aj cannot be computed from

aj(tl) =
∑
i

eji yil , (33)

as some values of yil are missing. Instead aj is estimated (von
Storch and Zwiers, 1999, Sect.13.2.8) as a least squares solution to
minimizing E[‖y −

∑
ajej‖2], i.e.

aj(tl) =

∑′
i eji yil∑′
i |eji |2

, (34)

where for a given value of l , the superscript prime means that the
summations are only over i for which yil is not missing.
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PCA is also used to fill missing data. Suppose the data record can
be divided into two parts, Y which contains no missing values, and
Ỹ which contains missing values. From (28), PCA applied to Y
yields E, which contains the eigenvectors ej . The PCs for Ỹ are
then computed from (34)

ãj(tl) =

∑′
i eji ỹil∑′
i |eji |2

. (35)

The missing values in Ỹ are filled in Ỹ′, where

Ỹ′ = EÃT , (36)

where the jth column of Ã is given by ãj(tl). More sophisticated
interpolation by PCA in Kaplan et al. (2000).
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2.12 Significance tests [Book, Sect.2.1.12]

The higher PCA modes basically contain noise. How many modes to
retain?
Some ‘rules of thumb’:

One approach is to plot the eigenvalues λj as a function of the
mode number j . Hopefully, one finds an abrupt transition from large
eigenvalues to small eigenvalues around mode number k . Keep the
first k modes.

Computationally more involved is the Monte Carlo test
(Preisendorfer, 1988): Set up random data matrices Rl

(l = 1, . . . , L), of the same size as the data matrix Y. The random
elements are normally distributed, with the variance of the random
data matching the variance of the actual data.
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Do PCA on each of the random matrices, yielding eigenvalues λ
(l)
j .

Assume for each l , the set of eigenvalues are sorted in descending
order. For each j , one examines the distribution of the L values of
λ
(l)
j , and finds the level λ0.05, which is exceeded only by 5% of the

λ
(l)
j values.
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Eigenvalues λj from Y lying above this λ0.05 level are “significant”.

If data have strong autocorrelation, dimension of Rl should be
reduced, with the effective sample size neff replacing sample size n.

Monte Carlo method performs PCA on L matrices with L about
100–1000 ⇒ costly for large data matrices.
Hence asymptotic methods based on central limit theorem are often
used with large data matrices — see Mardia et al. (1979,
pp.230-237) and Preisendorfer (1988, pp.204-206).
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