
Ch.2 Principal component analysis (PCA)

Books on PCA by Jolliffe (2002), Preisendorfer (1988).
PCA also called empirical orthogonal function (EOF) analysis.

2.1 Geometric approach to PCA [Book, Sect. 2.1.1]

Dataset with variables y1, · · · , ym, each variable sampled n times,
e.g. m time series each containing n observations in time.
For instance, one may have a dataset containing the monthly air
temperature measured at m stations over n months.

Objective of PCA: If m is a large number, we would like to capture
the essence of y1, · · · , ym by a smaller set of variables z1, · · · , zk
(i.e. k < m; and hopefully k � m, for truly large m).
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Begin with an intuitive geometric approach.
Start with only 2 variables, y1 and y2.

Figure : The PCA problem formulated as a minimization of the sum of
r2i , where ri is the shortest distance from the ith data point to the first
PCA axis z1.
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Optimal z1 found by minimizing
∑n

i=1 r
2
i .

This geometric approach to PCA due to Pearson (1901).

Note: PCA treats all variables equally, whereas regression divides
variables into independent and dependent variables.

In 3-D, z1 is the best 1-D line fit to the data, while z1 and z2 span a
2-D plane giving the best plane fit to the data.
In general, with an m-dimensional dataset, we want to find the
k-dimensional hyperplane giving the best fit.

2.2 Eigenvector approach to PCA [Book, Sect.2.1.2]

The more systematic eigenvector approach to PCA is due to
Hotelling (1933). In 2-D example, a data point is transformed from
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its old coordinates (y1, y2) to new coordinates (z1, z2) via a rotation
of the coordinate system:

Figure : Rotation of coordinate axes by an angle θ in a 2-dimensional
space.
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z1 = y1 cos θ + y2 sin θ

z2 = −y1 sin θ + y2 cos θ (1)

In the general m-dimensional case, introduce new coordinates

zj =
m∑
l=1

ejlyl , j = 1, · · · ,m. (2)

The objective is to find

e1 = [e11, · · · , e1m]T , (3)

which maximizes var(z1), i.e. find the coordinate transformation
such that the variance of the dataset along the direction of the z1
axis is maximized.
With

z1 =
m∑
l=1

e1lyl = eT
1 y, y = [y1, . . . , ym]T , (4)
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i.e. projecting the data point y onto the vector e1 gives a distance
of z1 along the e1 direction, we have

var(z1) = E [(z1 − z1)(z1 − z1)] = E [eT
1 (y − y)(y − y)Te1] , (5)

where we have used the vector property aTb = bTa. Thus,

var(z1) = eT
1 E [(y − y)(y − y)T] e1 = eT

1 Ce1 , (6)

with the covariance matrix C given by

C = E [(y − y)(y − y)T] . (7)

The larger is the vector norm ‖e1‖, the larger var(z1) will be.
Hence, need constraint on ‖e1‖ while maximizing var(z1). Impose a
normalization constraint ‖e1‖ = 1, i.e.

eT
1 e1 = 1 . (8)
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Optimization problem is to find e1 which maximizes eT
1 Ce1, subject

to the constraint
eT
1 e1 − 1 = 0 . (9)

Method of Lagrange multipliers commonly used to do optimization
under constraints (Book, Appendix B). Instead of finding stationary
points of eT

1 Ce1, we search for the stationary points of the Lagrange
function L,

L = eT
1 Ce1 − λ(eT

1 e1 − 1) , (10)

where λ is a Lagrange multiplier.

Differentiating L by the elements of e1, and setting the derivatives
to zero:

Ce1 − λe1 = 0 , (11)
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i.e. λ is an eigenvalue of the covariance matrix C, with e1 the
eigenvector.

Multiplying this equation by eT
1 on the left,

λ = eT
1 Ce1 = var(z1) . (12)

Since eT
1 Ce1 is maximized, so are var(z1) and λ.

New coordinate z1, called the principal component (PC), is found
from (4).
- - - - - - - -

Next, find z2:
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Our task is to find e2 which maximizes var(z2) = eT
2 Ce2, subject to

the constraint eT
2 e2 = 1, and the constraint that z2 be uncorrelated

with z1, i.e. the covariance between z2 and z1 be zero,

cov(z1, z2) = 0 . (13)

As C = CT, we can write

0 = cov(z1, z2) = cov(eT
1 y, eT

2 y)

= E[eT
1 (y − y)(y − y)Te2] = eT

1E[(y − y)(y − y)T]e2

= eT
1 Ce2 = eT

2 Ce1 = eT
2 λ1e1 = λ1e

T
2 e1 = λ1e

T
1 e2 . (14)

The orthogonality condition

eT
2 e1 = 0 , (15)

can be used as a constraint in place of (13).
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Upon introducing another Lagrange multiplier γ, we want to find an
e2 which gives a stationary point of the Lagrange function L,

L = eT
2 Ce2 − λ(eT

2 e2 − 1)− γ eT
2 e1 . (16)

Differentiating L by the elements of e2, and setting the derivatives
to zero:

Ce2 − λe2 − γe1 = 0 . (17)

Left multiplying this equation by eT
1 yields

eT
1 Ce2 − λeT

1 e2 − γ eT
1 e1 = 0 . (18)

On the left hand side, the first two terms are both zero from (14)
while the third term is simply γ, so we have γ = 0, and (17) reduces
to

Ce2 − λe2 = 0 , (19)
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i.e. λ is again an eigenvalue of C, with e2 the eigenvector. As

λ = eT
2 Ce2 = var(z2) , (20)

which is maximized, this λ = λ2 is as large as possible with λ2 < λ1.
(The case λ2 = λ1 is degenerate and will be discussed later). Hence,
λ2 is the second largest eigenvalue of C, with λ2 = var(z2). This
process can be repeated for z3, z4, . . .
- - - - - - - -

How to reconcile the geometric approach and the eigenvector
approach?

First we subtract the mean y from y, so the transformed data are
centred around the origin with y = 0. In the geometric approach, we
minimize the distance between the data points and the new axis. If
the unit vector e1 gives the direction of the new axis, then the

11 / 33



projection of a data point (described by the vector y) onto e1 is
(eT

1 y)e1. The component of y normal to e1 is y − (eT
1 y)e1.

Thus minimizing the distance between the data points and the new
axis amounts to minimizing

ε = E[ ‖ y − (eT
1 y)e1‖2 ] . (21)

ε = E[ ‖y‖2 − 2(eT
1 y)(eT

1 y) + (eT
1 y)eT

1 e1(eT
1 y) ], (22)

ε = E[ ‖y‖2 − (eT
1 y)2 ] = var(y)− var(eT

1 y) , (23)
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where var(y) ≡ E[ ‖y‖2], with y assumed to be zero. Since var(y) is
constant, minimizing ε is equivalent to maximizing var(eT

1 y), which
is equivalent to maximizing var(z1).

Hence the geometric approach of minimizing the distance between
the data points and the new axis is equivalent to the eigenvector
approach in finding the largest eigenvalue λ, which is simply
max[var(z1)].

Data covariance matrix versus data correlation matrix
So far, C is the data covariance matrix, but it can also be the data
correlation matrix, if one prefers.

In combined PCA, where two or more variables with different units
are combined into one large data matrix for PCA— e.g. finding the
PCA modes of the combined sea surface temperature data and the
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sea level pressure data— then one needs to standardize the
variables, so C is the correlation matrix.

2.3 Real and complex data [Book, Sect.2.1.3]
In general, for y real,

C ≡ E[(y − y)(y − y)T] , (24)

implies that CT = C, i.e. C is a real, symmetric matrix.

A positive semi-definite matrix A is defined by the property that for
any vector v 6= 0, it follows that vTAv ≥ 0 (Strang, 2005).

Q1: Prove that C is a real, symmetric, positive semi-definite matrix.
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If y is complex, then

C ≡ E[(y − y)(y − y)T∗] , (25)

with complex conjugation denoted by the superscript asterisk. As
CT∗ = C, C is a Hermitian matrix . It is also a positive
semi-definite matrix.

Theorems on Hermitian, positive semi-definite matrices tell us: C
has real eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0,
m∑
j=1

λj = var(y) , (26)
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with corresponding orthonormal eigenvectors, e1, . . . , em. The k
eigenvectors corresponding to λ1, . . . , λk minimize

εk = E[ ‖(y − y)−
k∑

j=1

(eT
j (y − y))ej‖2 ] , (27)

which can be expressed as

εk = var(y)−
k∑

j=1

λj . (28)

Hence λj is the variance explained by mode j .

2.4 Orthogonality relations [Book, Sect.2.1.4]

PCA finds the eigenvectors and eigenvalues of C.
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The orthonormal eigenvectors then provide a basis, i.e. the data y
can be expanded in terms of the eigenvectors ej :

y − y =
m∑
j=1

aj(t)ej , (29)

where aj(t) are the expansion coefficients. To obtain aj(t), left
multiply the above equation by eT

i , and use the orthonormal relation
of the eigenvectors,

eT
i ej = δij , (30)

(with δij denoting the Kronecker delta function, which equals 1 if
i = j , and 0 otherwise) to get

aj(t) = eT
j (y − y) , (31)
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i.e. aj(t) is obtained by the projection of the data vector y − y onto
the eigenvector ej , as the right hand side of this equation is simply a
dot product between the two vectors.

Nomenclature varies in the literature:
aj are called principal components, scores, temporal coefficients and
amplitudes;
eigenvectors ej are also referred to as principal vectors, loadings,
spatial patterns and EOFs (Empirical Orthogonal Functions).

We prefer calling aj principal components (PCs), ej eigenvectors or
EOFs (and the elements eij loadings), and j the mode number.

Note that for time series, aj is a function of time while ej is a
function of space, hence the names temporal coefficients and spatial
patterns describe them well.
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However, in many cases, the dataset may not consist of time series.
For instance, the dataset could be plankton collected from various
oceanographic stations— t then becomes the label for a station,
while ‘space’ here could represent the various plankton species, and
the data y(t) = [y1(t), . . . , ym(t)]T could be the amount of species
1, . . . ,m found in station t.

Another example comes from the multi-channel satellite image data,
where images of the earth’s surface have been collected at several
frequency channels. Here t becomes the location label for a pixel in
an image, and ‘space’ indicates the various frequency channels.

There are two important properties of PCAs. The expansion∑k
j=1 aj(t)ej(x) , with k ≤ m, explains more of the variance of the

data than any other linear combination
∑k

j=1 bj(t)fj(x) .
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Thus PCA provides the most efficient way to compress data, using k
eigenvectors ej and corresponding time series aj .

The second important property is that the time series in the set {aj}
are uncorrelated. We can write

aj(t) = eT
j (y − y) = (y − y)Tej . (32)

For i 6= j ,

cov(ai , aj) = E[eT
i (y − y)(y − y)Tej ] = eT

i E[(y − y)(y − y)T]ej

= eT
i Cej = eT

i λjej = λje
T
i ej = 0 , (33)

implying zero correlation between ai(t) and aj(t). Hence PCA
extracts the uncorrelated modes of variability of the data field.

20 / 33



2.5 Example: PCA of the tropical Pacific climate variability
[Book, Sect. 2.1.5]
Tropical Pacific has the El Niño phenomenon (Philander, 1990).
Every 2-10 years, a sudden warming of the coastal waters occurs off
Peru (El Niño). Sometimes a La Niña develops, i.e. anomalously
cool waters appear in the equatorial Pacific.

Ocean oscillation coupled to atmospheric oscillation (called the
Southern Oscillation). Hence the name ENSO (El Niño-Southern
Oscillation).

Take the monthly tropical Pacific sea surface temperature (SST)
from NOAA (1950-2000), (with climatological seasonal cycle
removed, and smoothed in time by a 3-month moving average). The
SST field has 2 spatial dimensions, but can easily be rearranged into
the form of y(t) for the analysis with PCA.
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The first six PCA modes account for 51.8%, 10.1%, 7.3%, 4.3%,
3.5% and 3.1%, respectively, of the total SST variance.

The spatial patterns (i.e. the eigenvectors or EOFs) for the first 3
modes are shown below. (Positive contours are indicated by the
solid curves, negative contours by dashed curves, and the zero
contour by the thick solid curve. The contour unit is 0.01◦C. The
eigenvectors have been normalized to unit norm.)
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Example: Sea surface temperature (SST) off Vancouver
Island

Satellite SST images for summer 1984–1991 analyzed by PCA
(Fang and Hsieh, 1993). Coastal upwelling off Vancouver Island
shows up as cool water.
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Figure : Cool temperature is shown as blue, warm temperature red. 26 / 33



Figure : Clouds to the south. 27 / 33
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PCA shows the first 4 modes account for 33%, 12%, 10% and 5%
of the variance.

The eigenvectors eT
1 , . . . , e

T
4 give 4 spatial patterns.

The PC (z1, . . . , z4) indicate the strength of the particular spatial
pattern at a given time.

Note the mean of SST at each pixel was not subtracted prior to
performing the PCA. Hence first spatial mode (eT

1 ) dominated by
the mean SST pattern. More meaningful if the mean SST pattern
was removed prior to PCA.
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Figure : Spatial patterns from the 4 leading eigenvectors.
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Figure : Principal components 1 and 2.
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Figure : Principal components 3 and 4
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Q2: From the principal components during 1984–1991, determine
which year the strongest plume of cool water was found to extend
offshore from (a) Brooks Peninsula and (b) Cape Scott (at the
northern tip of Vancouver Island)?

PCA functions in Matlab

www.mathworks.com/help/toolbox/stats/princomp.html

[eigenvectors, PCs, eigenvalues] = princomp(X)

www.mathworks.com/help/toolbox/stats/pcacov.html

(user provides data covariance or correlation matrix).
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