
Chap.12 Kernel methods [Book, Chap.7]

Neural network methods became popular in the mid to late 1980s,
but by the mid to late 1990s, kernel methods have also become
popular in machine learning.

The first kernel methods were nonlinear classifiers called support
vector machines (SVM), which were then generalized to nonlinear
regression (support vector regression, SVR).

Kernel methods were further developed to nonlinearly generalize
principal component analysis (PCA), canonical correlation analysis
(CCA), etc. The kernel method has also been extended to
probabilistic models, e.g. Gaussian processes (GP).
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12.1 From neural networks to kernel methods [Book, Sect.
7.1]

Linear regression:

yk =
∑
j

wkjxj + bk , (1)

with x the predictors and y the predictands or response variables.

When a multi-layer perceptron (MLP) NN is used for nonlinear
regression, the mapping does not proceed directly from x to y, but
passses through an intermediate layer of variables h, i.e. the hidden
neurons,

hj = tanh
(∑

i

wjixi + bj
)
, (2)

where the mapping from x to h is nonlinear through an activation
function like the hyperbolic tangent.
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The next stage is to map from h to y, and is most commonly done
via a linear mapping

yk =
∑
j

w̃kjhj + b̃k . (3)

Since (3) is formally identical to (1), one can think of the NN model
as first mapping nonlinearly from the input space to a “hidden”
space (containing the hidden neurons), i.e. φ : x→ h, then
performing linear regression between the hidden space variables and
the output variables.
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Figure : Schematic diagram illustrating the effect of the nonlinear
mapping φ from the input space to the hidden space, where a nonlinear
relation between the input x and the output y becomes a linear relation
(dashed line) between the hidden variables h and y .
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If the relation between x and y is highly nonlinear, then one must
use more hidden neurons, i.e. increase the dimension of the hidden
space, before one can find a good linear regression fit between the
hidden space variables and the output variables.

As the parameters wji , w̃kj , bj and b̃k are solved together, nonlinear
optimation is involved, leading to local minima, which is the main
disadvantage of the MLP NN.

The kernel methods follow a somewhat similar procedure:
In the first stage, a nonlinear function φ maps from the input space
to a hidden space, called the “feature” space.
In the second stage, one performs linear regression from the feature
space to the output space.
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Instead of linear regression, one can also perform linear
classification, PCA, CCA, etc. during the second stage.

Like the radial basis function NN with non-adaptive basis functions
(Book, Sect. 4.6) (and unlike the MLP NN with adaptive basis
functions), the optimization in stage two of a kernel method is
independent of stage 1, so only linear optimization is involved, and
there are no local minima— a main advantage over the MLP.

However, the feature space can be of very high (or even infinite)
dimension. This disadvantage is eliminated by the use of a kernel
trick, which manages to avoid the direct evaluation of the high
dimensional function φ altogether.
Hence many methods which were previously buried due to the
“curse of dimensionality” (Book, p.97) have been revived in a kernel
renaissance.
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(Some kernel methods, e.g. Gaussian processes, use nonlinear
optimization to find the hyperparameters, thus have the local
minima problem.)

12.2 Advantages and disadvantages of kernel methods
[Book, Sect. 7.5]

Since the mathematical formulation of the kernel methods (Book,
Sect. 7.2–7.4) is somewhat difficult, a summary of the main ideas of
kernel methods and their advantages and disadvantages is given
here.
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First consider the simple linear regression problem with a single
predictand variable y ,

y =
∑
i

ai xi + a0 , (4)

with xi the predictor variables, and ai and a0 the regression
parameters.

In the MLP NN approach to nonlinear regression, nonlinear adaptive
basis functions hj (also called hidden neurons) are introduced, so the
linear regression is between y and hj ,

y =
∑
j

ajhj(x;w) + a0 , (5)

with typically

hj(x;w) = tanh(
∑
i

wjixi + bj) . (6)
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Since y depends on w nonlinearly (due to the nonlinear function
tanh), the resulting optimization is nonlinear, with multiple minima
in general.

What happens if instead of adaptive basis functions hj(x;w), we use
non-adaptive basis functions φj(x), i.e. the basis functions do not
have adjustable parameters w? In this situation,

y =
∑
j

aj φj(x) + a0 . (7)

e.g., Taylor series expansion with 2 predictors (x1, x2) would have
{φj} = x1, x2, x

2
1 , x1x2, x

2
2 , . . .. The advantage of using non-adaptive

basis functions is that y does not depend on any parameter
nonlinearly, so only linear optimization is involved with no multiple
minima problem.
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The disadvantage is the curse of dimensionality (Book, p.97), i.e.
one generally needs a huge number of non-adaptive basis functions
compared to relatively few adaptive basis functions to model a
nonlinear relation, hence the dominance of MLP NN models despite
the local minima problem.

The curse of dimensionality is finally solved with the kernel trick, i.e.
although φ is a very high (or even infinite) dimensional vector
function, as long as the solution of the problem can be formulated
to involve only inner products like φT(x′)φ(x), then a kernel
function K can be introduced

K (x′, x) = φT(x′)φ(x). (8)
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The solution of the problem now only involves working with a very
manageable kernel function K (x′, x) instead of the unmanageable φ.
From Book, Sect. 7.4, the kernel regression solution is of the form

y =
n∑

k=1

αk K (xk , x) , (9)

where there are k = 1, . . . , n data points xk in the training dataset.

The most commonly used kernel is the Gaussian kernel or radial
basis function (RBF) kernel ,

K (x′, x) = exp

(
− ‖x

′ − x)‖2

2σ2

)
, (10)

If a Gaussian kernel function is used, then y is simply a linear
combination of Gaussian functions.
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In summary, with the kernel method, one can analyze the structure
in a high-dimensional feature space with only moderate
computational costs — as the kernel function gives the inner
product in the feature space without having to evaluate the feature
map φ directly.

The kernel method is applicable to all pattern analysis algorithms
expressed only in terms of inner products of the inputs.

In the feature space, linear pattern analysis algorithms are applied,
with no local minima problems since only linear optimization is
involved.
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Although only linear pattern analysis algorithms are used, the fully
nonlinear patterns in the input space can be extracted due to the
nonlinear feature map φ.

The main disadvantage of the kernel method is the lack of an easy
way to inversely map from the feature space back to the input data
space — a difficulty commonly referred to as the pre-image problem.

This problem arises e.g. in kernel principal component analysis
(kernel PCA, see Book, Sect. 10.4), where one wants to find the
pattern in the input space corresponding to a principal component in
the feature space.
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In kernel PCA, where PCA is performed in the feature space, the
eigenvectors must lie in the span of the data points in the feature
space, i.e.

v =
n∑

i=1

αiφ(xi) . (11)

As the feature space F is generally a much higher dimensional space
than the input space X and the mapping function φ is nonlinear,
one may not be able to find an x (i.e. the “pre-image”) in the input
space, such that φ(x) = v.
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Figure : Schematic diagram illustrating the pre-image problem in kernel
methods. The input space X is mapped by φ to the grey area in the
much larger feature space F . Two data points x1 and x2 are mapped to
φ(x1) and φ(x2), respectively, in F . Although v is a linear combination
of φ(x1) and φ(x2), it lies outside the grey area in F , hence there is no
“pre-image” x in X , such that φ(x) = v.
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12.3 Support vector regression (SVR) [Book, Sect. 9.1]
Support vector regression is a widely used kernel method for
nonlinear regression.
In SVR, the objective function to be minimized is

J = C
N∑

n=1

E [y(xn)− ydn] +
1

2
‖w‖2, (12)

where C is the inverse weight penalty parameter, E is an error
function and the second term is the weight penalty term. To retain
the sparseness property of the SVM classifier, E is usually taken to
be of the form

Eε(z) =

{
|z | − ε, if |z | > ε
0, otherwise .

(13)

This is an ε-insensitive error function, as it ignores errors of size
smaller than ε.
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Figure : The ε-insensitive error function Eε(z). Dashed line shows the
mean absolute error (MAE) function.
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Figure : A schematic diagram of support vector regression (SVR). Data
points lying within the “ε tube” (i.e. between y − ε and y + ε) are
ignored by the ε-insensitive error function, so these points offer no
support for the final solution. Hence data points lying on or outside the
tube are called “support vectors”.
For data points lying above and below the tube, their distances from the
tube are given by the “slack” variables ξ and ξ′. Data points lying inside
(or right on) the tube have ξ = 0 = ξ′. Those lying above the tube have
ξ > 0 and ξ′ = 0, while those lying below have ξ = 0 and ξ′ > 0.
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The regression is performed in the feature space, i.e.

y(x) = wTφ(x) + w0 , (14)

where φ is the feature map.

With the kernel function K (x, x′) = φT(x)φ(x′), and with a
Lagrange multiplier approach, the solution can be written in the
form

y(x) =
N∑

n=1

(λn − λ′n)K (x, xn) + w0 . (15)

All data points within the “ε-tube” have the Lagrange multipliers
λn = λ′n = 0, so they fail to contribute to the summation in (15),
thus leading to a sparse solution.
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Support vectors are the data points which contribute in the above
summation, i.e. either λn 6= 0 or λ′n 6= 0, meaning that the data
point must lie either outside the ε-tube or exactly at the boundary
of the tube.

If K is the Gaussian or radial basis function (RBF) kernel (10), then
(15) is simply a linear combination of radial basis functions centred
at the training data points xn.

SVR with the Gaussian kernel can be viewed as an extension of the
RBF NN method (Book, Sect. 4.6).
If the Gaussian or radial basis function (RBF) kernel (10) is used,
then there are three hyperparameters in SVR, namely C , ε and σ
(controlling the width of the Gaussian function in the kernel).
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To find the optimal values of the hyperparameters, multiple models
are trained for various values of the three hyperparameters, and
upon evaluating their performance over validation data, the best
estimates of the hyperparameters are obtained.

The simplest way to implement this is a 3-D grid search for the 3
hyperparameters, but this can be computationally expensive. One
can also use e.g. evolutionary computation to find the optimal
hyperparameters.

Inexpensive estimates of the hyperparameter values can be obtained
following Cherkassky and Ma (2004).
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Figure : SVR applied to a test problem: (a) Optimal values of the
hyperparameters C , ε and σ obtained from validation are used. The
training data are the circles, the SVR solution is the solid curve and the
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true relation is the dashed curve. (b) A larger C (i.e. less weight penalty)
and a smaller σ (i.e. narrower Gaussian functions) result in overfitting.
Underfitting occurs when (c) a larger ε (wider ε-tube) or (d) a smaller C
(larger weight penalty) is used.

The advantages of SVR over MLP NN are:
(a) For given values of the hyperparameters, SVR trains significantly
faster since it only solves sets of linear equations, hence is better
suited for high-dimensional datasets,
(b) SVR avoids the local minina problem from nonlinear
optimization, and
(c) the ε-insensitive error norm used by SVR is more robust to
outliers in the training data than the MSE.

23 / 25



However, the 3-D grid search for the optimal hyperparameters in
SVR can be computationally expensive.

For nonlinear classification problems, the support vector machine
(SVM) with Gaussian kernel has only 2 hyperparameters, namely C
and σ (in contrast to SVR, where the 3 hyperparameters are C , σ
and ε).

SVM functions in Matlab

SVM code for both classification and regression problems can be
downloaded from LIBSVM (Chang and Lin, 2001). The code can be
run on MATLAB, C++ and Java:
www.csie.ntu.edu.tw/~cjlin/libsvm/
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MATLAB Bioinformatics toolbox has SVM for classification (not
regression), called svmclassify:
www.mathworks.com/help/toolbox/bioinfo/ref/

svmclassify.html

References:

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: A library for support
vector machines. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Cherkassky, V. and Ma, Y. Q. (2004). Practical selection of SVM
parameters and noise estimation for SVM regression. Neural
Networks, 17(1):113–26.

25 / 25

www.mathworks.com/help/toolbox/bioinfo/ref/svmclassify.html
www.mathworks.com/help/toolbox/bioinfo/ref/svmclassify.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm

