Chap.11 Nonlinear principal component analysis [Book, Chap.
10]

We have seen machine learning methods nonlinearly generalizing the
linear regression method. Now we will examine ways to nonlinearly
generalize principal component analysis (PCA). Fig. below illustrates
the difference between (a) linear regression, (b) PCA, (c) nonlinear
regression, and (d) nonlinear PCA.
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Figure : (a) The linear regression line minimizes the mean squared error
(MSE) in the response variable. The dashed line illustrates the
dramatically different result when the role of the predictor variable and
the response variable are reversed. (b) PCA minimizes the MSE in all
variables. (c) Nonlinear regression methods produce a curve minimizing

N
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the MSE in the response variable. (d) Nonlinear PCA methods use a
curve which minimize the MSE of all variables. In both (c) and (d), the
smoothness of the curve can be varied by the method. [Reproduced from
Hastie and Stuetzle (1989)].

Nonlinear PCA can be performed by a variety of methods, e.g. the
auto-associative NN model using multi-layer perceptrons (MLP)
(Kramer, 1991; Hsieh, 2001, 2007), and the kernel PCA model
(Scholkopf et al., 1998).

Nonlinear PCA belongs to the class of nonlinear dimensionality
reduction techniques, which also includes principal curves (Hastie
and Stuetzle, 1989), locally linear embedding (LLE) (Roweis and
Saul, 2000) and isomap (Tenenbaum et al., 2000).



Self-organizing map (SOM) (Kohonen, 1982) can also be regarded
as a discrete version of NLPCA.

11.1 Auto-associative neural networks for nonlinear PCA
[Book, Sect.10.1]

Open curves [Book, Sect.10.1.1]

Kramer (1991) proposed a neural-network based nonlinear PCA
(NLPCA) model where the straight line solution in PCA is replaced
by a continuous open curve for approximating the data.

The fundamental difference between NLPCA and PCA is that PCA
only allows a linear mapping (v = e - x) between x and the PC u,
while NLPCA allows a nonlinear mapping.



Figure : A schematic diagram of the NN model for calculating the
NLPCA. There are 3 layers of hidden neurons sandwiched between the
input layer x on the left and the output layer x’ on the right. Next to the
input layer is the encoding layer, followed by the ‘bottleneck’ layer (with
a single neuron u), which is then followed by the decoding layer. A
nonlinear function maps from the higher dimension input space to the
1-dimension bottleneck space, followed by an inverse transform mapping
from the bottleneck space back to the original space represented by the
outputs, which are to be as close to the inputs as possible by minimizing
the objective function J = (|[x — x'||?), where (...) denotes calculating



the average over all the data points. Data compression is achieved by the
bottleneck, with the bottleneck neuron giving u, the nonlinear principal
component (NLPC).

One can view the NLPCA network as composed of two standard
2-layer MLP NNs placed one after the other. The first 2-layer
network maps from the inputs x through a hidden layer to the
bottleneck layer, here with only one neuron u, i.e. a nonlinear

mapping u = f(x).

The next 2-layer MLP NN inversely maps from the nonlinear PC
(NLPC) u back to the original higher dimensional x-space, with the
objective that the outputs x’ = g(u) be as close as possible to the
inputs x, where g(u) nonlinearly generates a curve in the x-space,
hence a 1-dimensional approximation of the original data.
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Because the target data for the output neurons x’ are simply the
input data x, such networks are called auto-associative NNs.

Squeezing the input information through a bottleneck layer (here
with only one neuron) accomplishes the dimensional reduction.

NLPCA of sea surface temperature anomalies [Book, Sect.
10.1.2]

The tropical Pacific SST anomaly (SSTA) data (1950-1999) (i.e.
the SST data with the climatological seasonal cycle removed) were
pre-filtered by PCA, with only the 3 leading modes retained (Hsieh,
2001). PCA modes 1, 2 and 3 accounted for 51.4%, 10.1% and
7.2%, respectively, of the variance in the SSTA data.



Due to the large number of spatially gridded variables, NLPCA could
not be applied directly to the SSTA time series, as this would lead to
a huge NN with the number of model parameters vastly exceeding
the number of observations. Instead, the first 3 PCs (PC1, PC2 and
PC3) were used as the input x for the NLPCA network.



PC2

PC1
Figure : Scatter plot of the SST anomaly (SSTA) data (shown as dots)
in the PC1-PC2 plane, with the El Nifio states lying in the upper right
corner, and the La Nina states in the upper left corner. The PC2 axis is
stretched relative to the PC1 axis for better visualization. The first mode
NLPCA approximation to the data is shown by the (overlapping) small



circles, which traced out a U-shaped curve. The first PCA eigenvector is
oriented along the horizontal line, and the second PCA, by the vertical
line. The varimax method rotates the two PCA eigenvectors in a
counterclockwise direction, as the rotated PCA (RPCA) eigenvectors are
oriented along the dashed lines.

In terms of variance explained, the first NLPCA mode explained
56.6% of the variance, versus 51.4% by the first PCA mode, and
47.2% by the first RPCA mode.

With the NLPCA, for a given value of the NLPC u, one can map
from u to the 3 PCs. This is done by assigning the value u to the
bottleneck neuron and mapping forward using the second half of the
network. Each of the 3 PCs can be multiplied by its associated PCA
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(spatial) eigenvector, and the three added together to yield the
spatial pattern for that particular value of u.

Unlike PCA which gives the same spatial anomaly pattern except for

changes in the amplitude as the PC varies, the NLPCA spatial
pattern generally varies continuously as the NLPC changes.
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Figure : The SSTA patterns (in °C) of the PCA, RPCA and the NLPCA.
The first and second PCA spatial modes are shown in (a) and (b)
respectively, (both with their corresponding PCs at maximum value).
The first and second varimax RPCA spatial modes are shown in (c) and
(d) respectively, (both with their corresponding RPCs at maximum
value). The anomaly pattern as the NLPC u of the first NLPCA mode
varies from (e) maximum (strong El Nifio) to (f) its minimum (strong La
Nifia). With a contour interval of 0.5°C , the positive contours are shown
as solid curves, negative contours, dashed curves, and the zero contour, a
thick curve.
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Clearly the asymmetry between El Nifio and La Nifa, i.e. the cool
anomalies during La Nifia episodes (Fig. (f)) are observed to centre
much further west of the warm anomalies during El Nifio (Fig. (e)),
is well captured by the first NLPCA mode.

With a linear approach, it is generally impossible to have a solution
simultaneously (a) explaining maximum global variance of the
dataset and (b) approaching local data clusters, hence the
dichotomy between PCA and RPCA, with PCA aiming for (a) and
RPCA for (b).

With the more flexible NLPCA method, both objectives (a) and (b)

may be attained together, thus the nonlinearity in NLPCA unifies
the PCA and RPCA approaches.
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The tropical Pacific SST example illustrates that with a complicated
oscillation like the El Nifio-La Nifia phenomenon, using a linear
method such as PCA results in the nonlinear mode being scattered
into several linear modes (in fact, all 3 leading PCA modes are
related to this phenomenon).

Closed curves [Book, Sect. 10.1.4]

Many phenomena involving waves or quasi-periodic fluctuations call
for a continuous closed curve solution for NLPCA.

Kirby and Miranda (1996) introduced an NLPCA with a circular
node at the network bottleneck [henceforth referred to as the
NLPCA(cir)], so that the nonlinear principal component (NLPC) as
represented by the circular node is an angular variable 6, and the

15/23



NLPCA(cir) is capable of approximating the data by a closed
continuous curve.

Figure : Schematic diagram of the NN model used for NLPCA with a
circular node at the bottleneck (NLPCA(cir)). Instead of having one
bottleneck neuron u, there are two neurons p and g constrained to lie on
a unit circle in the p-g plane, so there is only one free angular variable 6,
the NLPC. This network is for extracting a closed curve solution.
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For an application of NLPCA(cir), consider the Quasi-Biennial
Oscillation (QBO), which dominates over the annual cycle or other
variations in the equatorial stratosphere, with the period of
oscillation varying roughly between 22 and 32 months.

Average zonal (i.e. the westerly component of the) winds at 70, 50,
40, 30, 20, 15 and 10 hPa (i.e. from about 20 km to 30 km
altitude) during 1956-2006 were studied.

After the 51-year means were removed, the zonal wind anomalies U
at 7 vertical levels in the stratosphere became the 7 inputs to the
NLPCA(cir) network.
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Figure : The NLPCA(cir) mode 1 solution for the equatorial stratospheric
zonal wind anomalies. For comparison, the PCA mode 1 solution is
shown by the dashed line. Only 3 out of 7 dimensions are shown, namely
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the zonal velocity anomaly U at the top, middle and bottom levels (10,
30 and 70 hPa). Panel (a) gives a 3-D view, while (b)-(d) give 2-D views.
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Figure : Contour plot of the NLPCA(cir) mode 1 zonal wind anomalies
as a function of pressure and phase Oyeighted, Where Oyeighted 1S 6
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weighted by the histogram distribution of 6 (see Hamilton and Hsieh,

2002). Thus Oyeighted is more representative of actual time during a cycle

than #. Contour interval is 5 ms™!, with westerly winds indicated by
solid lines, easterlies by dashed lines, and zero contours by thick lines.
As the easterly wind anomaly descends with time (i.e. as phase
increases), wavy behaviour is seen in the 40, 50 and 70 hPa levels at
Hweighted around 0.4-0.5.

Nonlinear singular spectrum analysis (NLSSA) has also been
developed based on the NLPCA(cir) model (Hsieh and Wu, 2002)
(Book, Sect.10.6).

Also nonlinear canonical correlation analysis (NLCCA) by NN
(Cannon and Hsieh, 2008) (Book, Chap.11)
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Functions in Matlab:
NLPCA and NLCCA codes at:
Www.ocgy.ubc.ca/projects/clim.pred/download.html
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