
Chap.10 Forecast verification [Book, Sect. 8.5]

After a forecast model has been built, need to evaluate the quality
of its forecasts, a process known as forecast verification or forecast
evaluation (Jolliffe and Stephenson, 2003).

10.1 Binary forecasts

Start with forecasts for 2 classes or categories, where class 1 is for
an event (e.g. tornado) and class 2 for a non-event. Model forecasts
and observed data can be compared and arranged in a 2× 2
contingency table .

The number of events forecasted and indeed observed are called
“hits” and are place in entry a of the table. E.g. forecasts for
tornados which turned out to be correct.
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Entry b is the number of false alarms, e.g. tornados forecasted but
never materialized.

Entry c is the number of misses, e.g. tornados appeared in spite of
non-tornado forecasts.

Entry d is the number of correct negatives, i.e. non-tornado
forecasts which turned out to be correct.
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Yes No Total

Yes a  = hits b  = false alarms a +b  = forecast yes

No c  = misses d  = correct negatives c +d  = forecast no

Total a +c  = observed yes b +d  = observed no a +b +c +d  = total

Observed
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Figure : A 2× 2 contingency table used in the forecast verification of a
2-class problem. The number of forecasted “yes” and “no”, and the
number of observed “yes” and “no” are the entries in the table. Marginal
totals are also listed, e.g. the top row sums to a + b, the total number of
tornados forecasted, whereas the first column sums to a + c , the total
number of tornados observed. Finally, the total number of cases N is
given by N = a + b + c + d .
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The simplest measure of accuracy of binary forecasts is the fraction
correct (FC) [or hit rate (obsolete)], i.e. the number of correct
forecasts divided by the total number of forecasts,

FC =
a + d

N
=

a + d

a + b + c + d
, (1)

where FC ranges between 0 and 1, with 1 being the perfect score.

Unfortunately, this measure becomes very misleading if the number
of non-events vastly outnumber the number of events. E.g if
d � a, b, c , then (1) yields FC ≈ 1.

E.g., in Marzban and Stumpf (1996), one NN tornado forecast
model has a = 41, b = 31, c = 39 and d = 1002, since the vast
majority of days has no tornado forecasted and none observed. The
overwhelming size of d lifts FC to a lofty value of 0.937.
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In such situations, where the non-events vastly outnumber the
events, including d in the score is rather misleading. Dropping d in
both the numerator and the denominator in (1) gives the threat
score (TS) or critical success index (CSI) ,

TS = CSI =
a

a + b + c
, (2)

which is a much better measure of forecast accuracy than FC in
such situations. The worse TS is 0 and the best TS is 1.

Q1: What is the threat score for the tornado forecast model?
—–
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To see what fraction of the observed events (“yes”) were correctly
forecasted, we compute the probability of detection (POD) (or hit
rate)

POD =
hits

hits + misses
=

a

a + c
, (3)

with the worst POD score being 0 and the best score being 1.

Easy to increase POD if we simply issue many more forecasts of
events (“yes”), despite most of them being false alarms. Need to
know if there is forecast bias or frequency bias :

B =
total “yes” forecasted

total “yes” observed
=

a + b

a + c
. (4)

B would raise concern that the model is forecasting far too many
events compared to the number of observed events.

6 / 23



To see what fraction of the forecasted events (“yes”) never
materialized, we compute the false alarm ratio (FAR)

FAR =
false alarms

hits + false alarms
=

b

a + b
, (5)

with the worst FAR score being 1 and the best score being 0.

Don’t confuse the false alarm ratio (FAR) with the false alarm rate
(F ), also known as the probability of false detection (POFD) . F
measures the fraction of the observed “no” events which were
incorrectly forecasted as “yes”, i.e.

F = POFD =
false alarms

false alarms + correct negatives
=

b

b + d
, (6)

with the worst F score being 1 and the best score being 0.
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While F is not as commonly given as FAR and POD, it is one of the
axes in the relative operating characteristic (ROC) diagram, used
widely in probabilistic forecasts (Marzban, 2004; Kharin and Zwiers,
2003).

In an ROC diagram, F is the abscissa and POD, the ordinate.
Although our model may be issuing probabilistic forecasts in a
2-class problem, we are actually free to choose the decision
threshold used in the classification, i.e. instead of using a posterior
probability of 0.5 as the threshold for deciding whether to issue a
“yes” forecast, we may want to use 0.7 as the threshold if we want
fewer false alarms (i.e. lower F ) (at the expense of a lower POD), or
0.3 if we want to increase our POD (at the expense of increasing F
as well). The result of varying the threshold generates a curve in the
ROC diagram.
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Figure : A relative operating characteristic (ROC) diagram illustrating
the trade-off between the false alarm rate (F ) and the probability of
detection (POD) as the classification decision threshold is varied for a
given model (solid curve). Dashed curve shows the ROC of a better
model while diagonal line (POD = F ) means a model with zero skill.
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The choice of the threshold hinges on the cost associated with
missing an event and that with issuing a false alarm. For instance, if
we miss forecasting a powerful hurricane hitting a vulnerable coastal
city, the cost may be far higher than that from issuing a false alarm,
so we would want a low threshold value to increase the POD.

10.2 Skill scores [Book, Sect. 8.5.1]

Various skill scores have been designed to measure the relative
accuracy of a set of forecasts, with respect to a set of reference or
control forecasts.

Choices for the reference forecasts include (i) persistence, (ii)
climatology, (iii) random forecasts and (iv) forecasts from a
standard model.
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(i) Persistence forecasts simply persists the anomalies to the future
(e.g. tomorrow’s weather is forecasted to be the same as today’s
weather).
(ii) Climatological forecasts simply issue the climatological mean
value in the forecast.
(iii) In random forecasts, events are forecasted randomly but in
agreement with the forecasted frequency of such events. E.g., if
tornados are forecasted only 2% of the time in your model, then
random forecasts also only forecast tornados 2% of the time.
(iv) Finally the reference model can be a standard model, as the
researcher is trying to show that her new model is better.

For a particular measure of accuracy A, the skill score (SS) is
defined generically by

SS =
A− Aref

Aperfect − Aref

, (7)
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where Aperfect is the value of A for a set of perfect forecasts, and
Aref is the value of A computed over the set of reference forecasts.

Note that if we define A′ = −A, then SS is unchanged if computed
using A′ instead of A. This shows that SS is unaffected by whether
A is positively or negatively oriented (i.e. whether better accuracy is
indicated by a higher or lower value of A).

The Heidke skill score (HSS) (Heidke, 1926) is the skill score (7)
using the fraction correct (FC) for A and random forecasts as the
reference, i.e.

HSS =
FC− FCrandom

FCperfect − FCrandom

. (8)

Hence, if the forecasts are perfect, HSS = 1; if they are only as good
as random forecasts, HSS = 0; and if they are worse than random
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forecasts, HSS is negative. From (1), FC can be interpretted as the
fraction of hits (a/N) plus the fraction of correct negatives (d/N).

For FCrandom obtained from random forecasts, the fraction of hits is
the product of two probabilities, P(“yes” forecasted) and P(“yes”
observed), i.e. (a + b)/N and (a + c)/N , respectively.
Similarly, the fraction of correct negatives from random forecasts is
the product of P(“no” forecasted) and P(“no” observed), i.e.
(c + d)/N and (b + d)/N .

With FCrandom being the fraction of hits plus the fraction of correct
negatives, we have

FCrandom =

(
a + b

N

)(
a + c

N

)
+

(
c + d

N

)(
b + d

N

)
. (9)
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Substituting this into (8) and invoking (1) and FCperfect = 1, HSS is
then given by

HSS =
(a + d)/N − [(a + b)(a + c) + (b + d)(c + d)]/N2

1− [(a + b)(a + c) + (b + d)(c + d)]/N2
, (10)

which can be simplified to

HSS =
2(ad − bc)

(a + c)(c + d) + (a + b)(b + d)
. (11)

The Peirce skill score (PSS) (Peirce, 1884), also called the Hansen
and Kuipers’ score, or the true skill statistics (TSS) is similar to the
HSS, except that the reference used in the denominator of (8) is
unbiased, i.e. P(“yes” forecasted) is set to equal P(“yes” observed),

14 / 23



and P(“no” forecasted) to P(“no” observed) for FCrandom in the
denominator of (8), whence

FCrandom =

(
a + c

N

)2

+

(
b + d

N

)2

. (12)

The PSS is computed from

PSS =
(a + d)/N − [(a + b)(a + c) + (b + d)(c + d)]/N2

1− [(a + c)2 + (b + d)2]/N2
, (13)

which simplies to

PSS =
ad − bc

(a + c)(b + d)
. (14)

PSS can also be expressed as

PSS =
a

a + c
− b

b + d
= POD− F , (15)
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upon invoking (3) and (6).

Again, if the forecasts are perfect, PSS = 1; if they are only as good
as random forecasts, PSS = 0; and if they are worse than random
forecasts, PSS is negative.

Q2: For continuous variables, the root mean squared error (RMSE)
between forecasted and observed values is commonly used to
evaluate a forecast model. If model 1 has RMSE of 0.0395, model 2
has RMSE of 0.0374 and the RMSE of a standard model is 0.0389.
What are the RMSE skill scores for model 1 and model 2 with the
standard model as reference?
—–
Mean absolute error (MAE) is actually a better measure of the
average error than RMSE (Willmott and Matsuura, 2005), so MAE
SS is better than RMSE SS.
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10.3 Multiple classes [Book, sect. 8.5.2]

Next consider the forecast verification problem with c classes, where
c is an integer > 2. The contingency table is then a c × c matrix,
with the ith diagonal element giving the number of correct forecasts
for class Ci .

Fraction correct (FC) in (1) generalizes easily, as FC is simply the
sum of all the diagonal elements divided by the sum of all elements
of the matrix.

Other measures such as POD, FAR, etc. do not generalize naturally
to higher dimensions. Instead the way to use them is to collapse the
c × c matrix to a 2× 2 matrix.
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E.g., if the forecast classes are “cold”, “normal” and “warm”, we
can put “normal” and “warm” together to form the class of
“non-cold” events. Then we are back to two classes, namely “cold”
and “non-cold”, and measures such as POD, FAR, etc. can be easily
applied. Similarly, we can collapse to only “warm” and “non-warm”
events, or to “normal” and “non-normal” events.

For multi-classes, HSS in (8) and (10) generalizes to

HSS =

∑c
i=1 P(fi , oi)−

∑c
i=1 P(fi)P(oi)

1−
∑c

i=1 P(fi)P(oi)
, (16)

where fi denotes class Ci forecasted, oi denotes Ci observed,
P(fi , oi) the joint probability distribution of forecasts and
observations, P(fi) the marginal distribution of forecasts and P(oi)
the marginal distribution of observations. It is easy to see that (16)
reduces to (10) when there are only 2 classes.

18 / 23



PSS in (13) also generalizes to

PSS =

∑c
i=1 P(fi , oi)−

∑c
i=1 P(fi)P(oi)

1−
∑c

i=1[P(oi)]2
. (17)

10.4 Probabilistic forecasts [Book, Sect. 8.5.3]

In probabilistic forecasts, one can issue forecasts for binary events
based on the posterior probability, then compute skill scores for the
classification forecasts. Alternatively, one can apply skill scores
directly to the probabilistic forecasts.
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The most widely used score for the probabilistic forecasts of an
event is the Brier score (BS) (Brier, 1950). Formally, this score
resembles the MSE, i.e.

BS =
1

N

N∑
n=1

(fn − on)2, (18)

where there is a total of N pairs of forecasts fn and observations on.
While fn is a continuous variable within [0, 1], on is a binary variable,
being 1 if the event occurred and 0 if it did not occur.

BS is negatively oriented, i.e. the lower the better. Since |fn − on| is
bounded between 0 and 1 for each n, BS is also bounded between 0
and 1, with 0 being the perfect score.

20 / 23



From (7), the Brier skill score (BSS) is then

BSS =
BS− BSref

0− BSref

= 1− BS

BSref

, (19)

where the reference forecasts are often taken to be random forecasts
based on climatological probabilities.

Unlike BS, BSS is positively oriented, with 1 being the perfect score
and 0 meaning no skill relative to the reference forecasts.

For BS and BSS, the observed variable is a binary variable. If the
observed variable is a continuous variable, there are also probabilistic
forecast scores described in Book, Sect.9.4.

21 / 23



References:

Brier, W. G. (1950). Verification of forecasts expressed in terms of
probabilities. Monthly Weather Review, 78:1–3.

Heidke, P. (1926). Berechnung des Erfolges und der Güte der
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