
Ch.1 Correlation & Regression

1.1 Mean and Variance [Book, Sect.1.1, 1.2]
Let x be a random variable which takes on discrete values. For
example, x can be the outcome of a die cast, where the possible
values are xi = i , with i = 1,2,3,4,5,6.

The expectation or expected value of x from a population is given by

E[x ] =
∑
i

xiPi , (1)

where Pi is the probability of xi occurring. If the die is fair, Pi =
1/6 for all i .
Q1: What is E[x ] for a fair die?
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We also write

E[x ] = µx , (2)

with µx denoting the mean of x for the population.
The expectation of a sum of random variables satisfies

E[ax + by + c] = a E[x ] + b E[y ] + c , (3)

where x and y are random variables, and a, b and c are constants.

For a random variable x which takes on continuous values over a
domain Ω, the expection is given by an integral,

E[x ] =

∫
Ω

xp(x) dx , (4)
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where p(x) is the probability density function. For any function
f (x), the expectation is

E[f (x)] =

∫
Ω

f (x)p(x) dx (continuous case)

=
∑
i

f (xi)Pi (discrete case). (5)

In practice, one can only sample N measurements of x (x1, . . . , xN)
from the population. The sample mean x or 〈x〉 is calculated as

x ≡ 〈x〉 =
1

N

N∑
i=1

xi , (6)

which is in general different from the population mean µx . As the
sample size increases, the sample mean approaches the population
mean.

3 / 29



Fluctuations about the mean value is commonly characterized by
the variance of the population,

var(x) ≡ E[(x−µx)2] = E[x2−2xµx+µ2
x ] = E[x2]+E[−2xµx ]+E[µ2

x ]

= E[x2]− 2µxE[x ] + µ2
x = E[x2]− µ2

x , (7)

where (3) and (2) have been invoked.

The standard deviation s is the positive square root of the
population variance, i.e.

s2 = var(x). (8)

The sample standard deviation σ is the positive square root of the
sample variance, given by

σ2 =
1

N − 1

N∑
i=1

(xi − x)2. (9)
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As the sample size increases, the sample variance approaches the
population variance. For large N , distinction is often not made
between having N − 1 or N in the denominator of (9).

Often one would like to compare two very different variables,
e.g. sea surface temperature and fish population. To avoid
comparing apples with oranges, one usually standardizes the
variables before making the comparison. The standardized variable

xs = (x − x)/σ , (10)

is obtained from the original variable by subtracting the sample
mean and dividing by the sample standard deviation. The
standardized variable is also called the normalized variable or the
standardized anomaly (where anomaly means the deviation from
the mean value).
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For two random variables x and y , with mean µx and µy

respectively, their covariance is given by

cov(x , y) = E[(x − µx)(y − µy )]. (11)

The variance is simply a special case of the covariance, with

var(x) = cov(x , x). (12)

The sample covariance is computed as

cov(x , y) =
1

N − 1

N∑
i=1

(xi − x)(yi − y). (13)
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1.2 Correlation: [Book, Sect.1.3]
The (Pearson) correlation coefficient, widely used to represent the
strength of the linear relationship between two variables x and y , is
defined as

ρ̂xy =
cov(x , y)

sxsy
, (14)

where sx and sy are the population standard deviations for x and y ,
respectively.
For a sample containing N pairs of (x , y) measurements or
observations, the sample correlation is computed by

ρ ≡ ρxy =

N∑
i=1

(xi − x)(yi − y)

[
N∑
i=1

(xi − x)2

] 1
2
[

N∑
i=1

(yi − y)2

] 1
2

, (15)
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which lies between -1 and +1.

Test of null hypothesis: Can the obtained sample correlation be
considered significantly different from 0? This is also called a test of
the null (i.e. ρ̂xy = 0) hypothesis.

For example, with N = 32 data pairs, ρ was found to be 0.36. Is
this correlation significant at the 5% level? In other words, if the
true correlation is zero (ρ̂xy = 0), is there less than 5% chance that
we could obtain ρ ≥ 0.36 for our sample?
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Use t test. [See Book, pp.3-4]. Significance test very dependent on
sample size N .

Autocorrelation: Often the observations are measurements at
regular time intervals, i.e. time series, and neighbouring data points
in the time series are correlated. E.g. if it rains one day, it increases
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the probability of rain the following day. With autocorrelation, the
effective sample size may be far fewer than the actual number of
observations in the sample, and the value of N used in the
significance tests will have to be adjusted to represent the effective
sample size.

A statistical measure is said to be robust, if the measure gives
reasonable results even when the model assumptions (e.g. data
obeying Gaussian distribution) are not satisfied. A statistical
measure is said to be resistant, if the measure gives reasonable
results even when the dataset contains one or a few outliers (an
outlier being an extreme data value arising from a measurement or
recording error, or from an abnormal event).

Correlation assumes a linear relation between x and y .
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Figure : (a) Correlation is not robust to deviations from linearity, as the
nonlinear relation between x and y is missed by ρ ≈ 0. (b) Correlation is
not resistant to outliers, without the single outlier, the correlation
coefficient changes from positive to negative.
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Spearman rank correlation
For the correlation to be more robust and resistant to outliers, the
Spearman rank correlation is often used.
Arrange the data {x1, . . . , xN} in the order according to their size
(starting with the smallest), and if x is the nth member, then
rank(x) ≡ rx = n. The correlation is then calculated for rx and ry
instead.

E.g., if six measurements of x yielded the values 1, 3, 0, 5, 3, 6 then
the corresponding rx values are 2, 3.5, 1, 5, 3.5, 6, (where the tied
values were all assigned an averaged rank). If measurements of y
yielded 2, 3,−1, 5, 4,−99 (an outlier), then the corresponding ry
values are 3, 4, 2, 6, 5, 1. The Spearman rank correlation is +0.12,
whereas in contrast, the Pearson correlation is −0.61, which shows
the strong influence exerted by an outlier.
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Autocorrelation
To determine the degree of autocorrelation in a time series, we use
the autocorrelation coefficient, where a copy of the time series is
shifted in time by a lag of l time intervals, and then correlated with
the original time series. The lag-l autocorrelation coefficient is given
by

ρ(l) =

N−l∑
i=1

[(xi − x)(xi+l − x)]

N∑
i=1

(xi − x)2

, (16)

where x is the sample mean.
The function ρ(l), which has the value 1 at lag 0, begins to decrease
as the lag increases. The lag where ρ(l) first intersects the l-axis is
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l0, the first zero crossing . A crude estimate for the effective sample
size is Neff = N/l0.

Q2: Suppose for a time series with 500 monthly values the
autocorrelation function has values 0.72, 0.50, 0.31, 0.18, 0.04,
-0.21, -0.33, -0.45, -0.24, -0.11, 0.15, 0.29, 0.37, 0.22, 0.06, ... for
lags of 1, 2, ..., 15. Estimate the first zero crossing l0 and the
effective sample size.

Correlation functions in Matlab
www.mathworks.com/help/techdoc/ref/corrcoef.html

rho = corrcoef(x,y)
[rho, p] = corrcoef(x,y),
where the p-value is the probability of getting a correlation as large
as the observed value by random chance, when the true correlation
is zero, based on the t test.
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Alternatively, in the Matlab Statistics Toolbox:
www.mathworks.com/help/toolbox/stats/corr.html

rho = corr(x,y)
[rho, p] = corr(x,y)
This has Spearman rank correlation as an option.
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1.3 Regression [Book, Sect.1.4]
Regression is used to find a linear relation between a dependent
variable y and one or more independent variables x.

Linear regression
For simple linear regression, there is only one independent variable
x , and the dataset contains N pairs of (x , y) measurements. The
relation is

yi = ỹi + ei = a0 + a1xi + ei , i = 1, . . . , N , (17)

where a0 and a1 are the regression parameters, ỹi is the yi predicted
or described by the linear regression relation, and ei is the error or
the residual unaccounted for by the regression
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As regression is commonly used as a prediction tool (i.e. given x ,
use the regression relation to predict y), x is referred to as the
predictor or independent variable, and y , the predictand, response or
dependent variable.
The error

ei = yi − ỹi = yi − a0 − a1xi . (18)

17 / 29



By finding the optimal values of the parameters a0 and a1, linear
regression minimizes the sum of squared errors (SSE),

SSE =
N∑
i=1

ei
2 =

N∑
i=1

(yi − a0 − a1xi)
2, (19)

yielding the best straight line relation between y and x . Because the
SSE is minimized, this method is also referred to as the least
squares method.

∂SSE

∂a0
= 0 ⇒

N∑
i=1

(yi − a0 − a1xi) = 0. (20)

∂SSE

∂a1
= 0 ⇒

N∑
i=1

(yi − a0 − a1xi)xi = 0. (21)
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These two equations are called the normal equations, from which we
will obtain the optimal values of a0 and a1.
From (20), we have

a0 =
1

N

∑
yi −

a1

N

∑
xi , i.e. a0 = y − a1x . (22)

Substituting (22) into (21) yields

a1 =

∑
xiyi − Nx y∑
x2
i − Nx x

. (23)

Relating regression to correlation
As regression and correlation are two approaches to extract linear
relations between two variables, the two methods are related.
Eq.(23) can be rewritten as

a1 =

∑
(xi − x)(yi − y)∑

(xi − x)2
(24)
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Using Eq. (15), we get

a1 = ρxy
σy
σx
, (25)

i.e. the slope of the regression line is the correlation coefficient
times the ratio of the standard deviation of y to that of x .

It can also be shown that for the standard deviation of the error
(σe):

σ2
e = σ2

y (1− ρ2
xy ), (26)

where 1− ρ2
xy is the fraction of the variance of y not accounted for

by the regression.

Q3: If ρxy = 0.7, what % of the variance of y is not accounted for
by the regression?

Partitioning the variance
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It can be shown that the variance, i.e. the total sum of squares
(SST) , can be partitioned into two: The first part is that accounted
for by the regression relation, i.e. the sum of squares due to
regression (SSR) , and the remainder is the sum of squared errors
(SSE) :

SST = SSR+SSE, (27)

where

SST =
N∑
i=1

(yi − y)2, (28)

SSR =
N∑
i=1

(ỹi − y)2, (29)

SSE =
N∑
i=1

(yi − ỹi)
2. (30)
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How well the regression fitted the data can be characterized by

R2 =
SSR

SST
= 1− SSE

SST
, (31)

where R2 approaches 1 when the fit is very good. R is called the
multiple correlation coefficient, as it can be shown that it is the
correlation between ỹ and y (Draper and Smith, 1981, p.46), and
this holds even when there are multiple predictors in the regression.
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Multiple linear regression (MLR)
Multiple predictors xl , (l = 1, · · · , k) for the response variable y :

yi = a0 +
k∑

l=1

xilal + ei , i = 1, · · · ,N . (32)

In vector form,
y = Xa + e, (33)

where

y =

 y1
...
yN

 , X =

 1 x11 · · · xk1
...

...
...

...
1 x1N · · · xkN

 , (34)
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a =

 a0
...
ak

 , e =

 e1
...
eN

 . (35)

SSE = eTe = (y − Xa)T(y − Xa), (36)

where the superscript T denotes the transpose. To minimize SSE
with respect to a, we differentiate the SSE by a and set the
derivatives to zero, yielding the normal equations,

XT(y − Xa) = 0. (37)

⇒ XTXa = XTy ⇒ a = (XTX)−1 XTy. (38)

24 / 29



Stepwise regression
Sometimes there are many possible predictors. When all possible
predictors are used in building an MLR model, one often ‘overfits’
the data (esp. when the sample size is relatively small), i.e. too
many parameters are used in the model so that one is simply fitting
to the noise in the data.

Stepwise regression automatically eliminates insignificant predictors:
(1) Start with no predictors.
(2) Forward selection: try out the predictors one by one, include
them if they are ‘statistically significant’.
(3) Backward elimination: test the candidate predictors one by one
for statistical significance, deleting any which are not significant.
(4) Iterate steps (2) and (3) until no more changes.

Perfect Prog and MOS
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Physical (or dynamical) prediction models have surpassed statistical
models in many fields.
E.g. in numerical weather forecasting, dynamical models can be
integrated forward in time to give weather forecasts. Nevertheless
regression is commonly used to improve the raw forecasts from
dynamical models.
Why? Variables in the dynamical model usually have poor resolution
and are sometimes too idealized. E.g., the lowest temperature level
in the model may be some distance above the ground. Some local
variable (e.g. ozone concentration) may not even be variables carried
in the dynamical model.

The Perfect Prog (abbreviation for perfect prognosis) scheme
computes an MLR from the historical data archive:

y(t) = x(t)Ta + e(t), (39)
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During actual forecasting, x(t) is provided by the forecasts from the
dynamical model, and y(t) is predicted by the MLR.

Problem: while the regression model was developed or trained using
historical data for x, the actual forecasts used the dynamical model
forecasts for x. Hence, the systematic error between the dynamical
model forecasts and real data have not been taken into account—
i.e. perfect prognosis is assumed.

A better approach is the model output statistics (MOS) scheme:
the dynamical model forecasts have been archived, so the MLR was
developed using y(t) from the data archive and x(t) from the
dynamical model forecast archive.
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Since x was from the dynamical model forecasts during both model
training and actual forecasting, the model bias in Perfect Prog has
been eliminated.

While MOS is more accurate than Perfect Prog, it is considerable
more difficult to implement since a slight modification of the
dynamical model would require the regeneration of the dynamical
model forecast archive and the recalculation of the regression
relations.

Regression functions in Matlab

www.mathworks.com/help/toolbox/stats/regress.html

a = regress(y, X)

www.mathworks.com/help/toolbox/stats/regstats.html
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regstats(y, X, model)

Stepwise regression:
www.mathworks.com/help/toolbox/stats/stepwisefit.html

a = stepwisefit(X, y)

Interactive stepwise regression:
www.mathworks.com/help/toolbox/stats/stepwise.html

stepwise(X, y)
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